首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

算法复杂度O(1),O(n),O(logn),O(nlogn)的含义

相信很多开发的同伴们在研究算法、排序的时候经常会碰到O(1),O(n),O(logn),O(nlogn)这些复杂度,看到这里就会有个疑惑,这个O(N)到底代表什么呢?带着好奇开始今天文章。...首先o(1), o(n), o(logn), o(nlogn)是用来表示对应算法的时间复杂度,这是算法的时间复杂度的表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。...O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 时间复杂度为O(n)—线性阶,就代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。...n*(n-1) 时间复杂度O(logn)—对数阶,当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。...这个复杂度高于线性低于平方。归并排序就是O(nlogn)的时间复杂度。

7.1K30

算法中描述复杂度的大O是什么意思?

为了描述一个算法的效率,就用到了这个大O,包括: O(n) 线性时间操作 O(1) 常数时间操作 O(log n) 对数时间操作 例如在 Redis 的文档中,对每个命令都会给出复杂度描述 ? ?...明白大O的作用有助于我们提高程序的效率,下面看看他们的具体含义 O(n) 线性时间操作 假设有一个盒子,其中有多个印着数字的卡片(例如 1, 2, 3, 4, … 16) 现在我们被要求找出数字6的卡片...(1, 2, 3, 4, … 16),在盒子外面写上盒子中有16个数字 当有人问我们盒子里有多少个数字的时候,我们看一眼盒子上的标记就可以马上告诉他有16个 这就是常数操作,记为 O(1) O(log...这就是指数型操作,记为 O(log n) 小结 可以看到,O(1) 最牛,不管数据量有多大,都是一下就完成,O(n) 最惨,数据量大时就有的忙了,O(log n) 虽然与数据量成正比,但所需时间是指数型下降的...,很不错 知道了大O的含义,我们也就可以更好的选择算法,例如 redis 中的 keys命令,他的复杂度是 O(n),我们就要慎用了

1.9K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大O——时间复杂度

    推论3.4: 算法1比算法2的复杂度量级高等价于 ? 大O登场 通常比较算法复杂度,只用比较量级即可。量级用O()表示。...O()定义: (i) 如果算法T1与算法T2的复杂度在同一量级,那么O(T1) = O(T2) (ii) 如果算法T1比算法T2的复杂度量级高,那么O(T1) > O(T2) (iii) 如果算法T1比算法...T2的复杂度量级低,那么O(T1) O(T2) ?...根据上述O()的定义:O(T1) = O(T2) 这里其实蕴含了一个非常实用的结论: 推论3.5: 算法复杂度的大O表示可以简化为该算法最高阶部分的复杂度的大O表示。...大部分的算法或者复杂度理论的书籍,在介绍大O时,要么过于数学形式化,要么过于感性非严格化。 本篇文章旨在用最少的数学知识、启发式行文方式、全新的原创视角,为读者构建一个清晰、严格的时间复杂度概念。

    84130

    去掉 Attention 的 Softmax,复杂度降为 O (n)

    众所周知,尽管基于 Attention 机制的 Transformer 类模型有着良好的并行性能,但它的空间和时间复杂度都是 O(n2)\mathcal {O}(n^2) 级别的,nn 是序列长度,所以当...QKTQK^T 这一步我们得到一个 n×nn\times n 的矩阵,之后还要做一个 Softmax 对一个 1×n1\times n 的行向量进行 Softmax,时间复杂度是 O(n)O (n),但是对一个...n×nn\times n 矩阵的每一行做一个 Softmax,时间复杂度就是 O(n2)O (n^2) 如果没有 Softmax,那么 Attention 的公式就变为三个矩阵连乘 QK⊤V\boldsymbol...)O (d^2n)),然后再用 QQ 左乘它(这一步的时间复杂度是 O(d2n)O (d^2n)),由于 d≪nd \ll n,所以这样算大致的时间复杂度只是 O(n)O (n) 对于 BERT base...因为 768 实际上是通过 Multi-Head 拼接得到的,而每个 head 的 d=64d=64 也就是说,去掉 Softmax 的 Attention 复杂度可以降到最理想的线性级别 O(n)\mathcal

    1.2K20

    数据结构与算法 1-2 时间复杂度与大O表示

    本系列是我在学习《基于Python的数据结构》时候的笔记。本小节主要介绍如何衡量算法效率,从通过程序执行的时间衡量到使用"大O记法"表示的时间复杂度来衡量。...此时我们将T(n) = O(g(n)),此时的T(n)就是时间复杂度,此时将时间复杂度用"大O"表示法表示,也就是O(g(n)),此时称g(n)为F(n)的渐进函数。...时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)。...前面从直观的角度来分析,接下来从数学的角度来分析。 对于算法的时间效率,我们可以用"大O记法"来表示。"...大O记法":对于单调的整数函数f,如果存在一个整数函数g和实常数c > 0,使得对于充分大的n总有f(n) 的一个渐进函数(忽略常数),记为f(n) = O(g(n

    54400

    用O(1)的时间复杂度删除链表节点

    前言 有一个单向链表,给定了头指针和一个节点指针,如何在O(1)的时间内删除该节点?本文将分享一种实现思路来解决这个问题,欢迎各位感兴趣的开发者阅读本文。...13 修改节点9的指针指向,将其指向节点13,就完成了节点10的删除 image-20220209222408426 通过这种方式,我们的确删除了给定的节点,但是需要从头开始遍历链表寻找节点,时间复杂度是...O(n)。...时间复杂度分析:对于n-1个非尾节点而言,我们可以在O(1)的时间内利用节点覆盖法实现删除,但是对于尾节点而言,我们仍然需要按序遍历来删除节点,时间复杂度是O(n)。...那么,总的时间复杂度就为:[(n-1) * O(1) + O(n)] / n,最终结果还是 O(1),符合题目要求。

    75930

    【译】大O的友好指南

    算法复杂度 并不是每个公司在面试的时候都会问关于算法复杂度大O的问题,但是如果你想要到Facebook、Google或Amazon这样的公司工作的话,这是你必须要了解的知识。...如果你没有很好的数学功底,那么你去看课本上关于大O的概念的话将会是一场灾难。...可以看到,由于我们不需要精确的比较,所以数字2对结果的影响微乎其微。这就是为什么当我们计算大O的时候,你只需要关心影响最大的因素,而可以忽略常数以及影响较小的因素。...我们再来看一个例子: x + x^2 + x^3 你可以放心的忽略掉x和x2,因为它们没有x3对结果的影响大。 大O只是用来判断运行时间增加的速率,也叫作渐近分析。...所以我们已经知道了如何计算大O,但是我们怎么知道要选择哪些影响因素呢?我们需要尽可能大的输入,来忽略常数和低阶因素。大O表示的是最坏情况,这才是最有意义的比较结果。 PS:我的博客支持评论功能啦!

    43830

    Solidity 优化 - 编写 O(1) 复杂度的可迭代映射

    译文出自:登链翻译计划[1] 译者:Tiny 熊[2] 本系列文章有: Solidity 优化 - 控制 gas 成本[3] Solidity 优化 - 编写 O(1) 复杂度的可迭代映射[4] Solidity...读者应该对 Solidity 中的编码以及 EVM 的总体工作方式有所了解。 译者注:O(1) 复杂度: 表示即便数量增加,gas 成本也会保持一样。...简单-性能分析 请注意,通过将溢出的元素与最后一个元素交换,然后从数组中弹出最后一个元素,可以更有效地从数组中删除元素。也就是说,这样做仍然需要**O(n)**的复杂度来循环查找要删除的元素的位置。...更好的是,我们也可以使用此解决方案遍历整个集合。 ? 链表方案性能分析 最终性能分析。如你所见,无论学生人数多少,都需要增加和减少成本 O(1) 复杂度 gas !...结论 在本文中,我们探索了可迭代映射的实现,该数据结构不仅支持**O(1)**复杂度的添加,删除和查找,类似于传统的映射,而且还支持集合迭代。我们进行了性能分析以确认假设,并得出了可行的最终实现!

    1.2K20

    Python 算法基础篇:大O符号表示法和常见时间复杂度分析

    Python 算法基础篇:大 O 符号表示法和常见时间复杂度分析 引言 在分析和比较算法的性能时,时间复杂度是一项重要的指标。而大 O 符号表示法是用来描述算法时间复杂度的常见表示方法。...大 O 符号表示法 大 O 符号表示法是一种用来描述算法时间复杂度的记号系统。它表示算法运行时间随输入规模增长的上界。在大 O 符号表示法中,我们通常关注算法的最坏情况下的运行时间。...a ) 大 O 符号的定义 大 O 符号表示法的定义如下: O ( g ( n )):表示算法的时间复杂度为 g ( n )。 g ( n ):表示一个函数,表示算法的运行时间。...总结 本篇博客介绍了大 O 符号表示法和常见时间复杂度的概念,并通过 Python 代码示例演示了它们的应用。大 O 符号表示法是描述算法时间复杂度的常见表示方法,它帮助我们比较和评估不同算法的性能。...常见时间复杂度分析则通过观察算法的结构来确定算法的时间复杂度。 理解大 O 符号表示法和常见时间复杂度分析可以帮助我们选择合适的算法来解决问题,并评估算法的性能。

    57200

    将判断 NSArray 数组是否包含指定元素的时间复杂度从 O(n) 降为 O(1)

    前言 NSArray 获取指定 元素 的位置 或者 判断是否存在指定的 元素 的时间复杂度是 O(n)(包含特定元素时,平均耗时是 O(n/2),如果不包含特定元素,耗时是 O(n))。...image 本文会介绍一个特别的方案,通过将数组转为字典,我们可以将时间复杂度降低到 O(1) 级别。...php 中的数组 首先,我们先对 php 的数组进行一些了解 在 php 中,数组提供了一种特殊的用法:关联键的数组。...: 字典的 键 是数组存储的 元素 该设计方式可以保证后续通过 objectForKey: 判断是否存在指定的 元素 字典的 值 是 数组的 索引值 该规则保证字典可以恢复为数组 // 将数组转为字典...image 通过测试日志,我们可以发现该方案可以成功将时间复杂度降低到 O(1) 级别

    1.8K20

    【计算理论】计算复杂性 ( 算法复杂度标记 | 渐进上界 | 大 O 记号 | 常用的渐进上界 )

    文章目录 一、渐进上界 二、大 O 记号 三、常用的渐进上界 一、渐进上界 ---- \rm g(n) 是 \rm f(n) 的渐进上界 : 存在 \rm c , 并且存在 \rm N ,...\rm N , 使得任何 \rm n 并且 \rm n \geq N , \exist N \ \forall n ( n \geq N ) 上述表述 , 表示 当 \rm n 充分大...\rm cg(n) , 当 \rm n 充分大时 , 一定有 \rm f(n) \leq cg(n) , 这是一个趋势 , 称 \rm g(n) 是 \rm f(n) 的渐进上界 ;...在渐近分析中 , 常数 \rm c 一般忽略不计 , 其大小是 2 , 3 或者几亿 都不重要 ; 二、大 O 记号 ---- \rm f(n) = O(g(n)) 三、常用的渐进上界 ----...0) 大 \rm O 记号运算 : \rm O(n) + O(n^2) = O(n^2) , 忽略低阶项 ; 渐进上界表示符号会 忽略系数影响 , 忽略低阶的项 ;

    42200

    用O(1)的时间复杂度删除单链表中的某个节点

    给定链表的头指针和一个结点指针,在O(1)时间删除该结点。...(ListNode* pListHead, ListNode* pToBeDeleted); 这是一道广为流传的Google面试题,考察我们对链表的操作和时间复杂度的了解,咋一看这道题还想不出什么较好的解法...一般单链表删除某个节点,需要知道删除节点的前一个节点,则需要O(n)的遍历时间,显然常规思路是不行的。...可见,该方法可行,但如果待删除节点为最后一个节点,则不能按照以上思路,没有办法,只能按照常规方法遍历,时间复杂度为O(n),是不是不符合题目要求呢?...其实我们分析一下,仍然是满足题目要求的,如果删除节点为前面的n-1个节点,则时间复杂度为O(1),只有删除节点为最后一个时,时间复杂度才为O(n),所以平均的时间复杂度为:(O(1) * (n-1) +

    86180

    报刊亭二维码,这才是接地气的O2O

    淘宝店的二维码需要使用淘宝App扫描后流程才会顺畅,但现在安装淘宝客户端的又没有微信和浏览器的多。 这也让我想到,报刊亭或将成为二维码的新窗口。...大家都知道二维码是线上和线下的连接,马化腾也说过二维码是线下的重要入口。现在二维码也开始呈现在广告牌、商家菜单、产品包装以及电脑网页等处。...现在报刊亭挂上了淘宝店的二维码,将来可能挂上微信公众账号的二维码,抑或报纸杂志本身官网的二维码。...更可能是本地的一些生活服务信息的二维码,例如服务行业的,直接将服务从业者的照片链接对应到二维码。...总之真正的O2O,最重要的还是线上线下连接的场景以及条件。现在,报刊亭等一切可以插入二维码的地方,均会成为线上服务侵蚀线下的点,泛终端、泛渠道时代的到来,传统卖场或许会为了二维码紧张。

    71040

    又一个,时间复杂度为O(n)的排序!

    桶排序(Bucket Sort),是一种时间复杂度为O(n)的排序。 画外音:百度“桶排序”,很多文章是错误的,本文内容与《算法导论》中的桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,是桶空间B; (2)第二个辅助空间,是桶内的元素链表空间; 总的来说,空间复杂度是O(n)。...1)桶X内的所有元素,是一直有序的; (2)插入排序是稳定的,因此桶内元素顺序也是稳定的; 当arr[N]中的所有元素,都按照上述步骤放入对应的桶后,就完成了全量的排序。...桶排序的伪代码是: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应的桶B[X]; 使用插入排序,将A[i]插入到...桶排序(Bucket Sort),总结: (1)桶排序,是一种复杂度为O(n)的排序; (2)桶排序,是一种稳定的排序; (3)桶排序,适用于数据均匀分布在一个区间内的场景; 希望这一分钟,大家有收获。

    1K30

    什么是算法中的大 O 符号?

    大 O 符号是一种数学符号,用于计算机科学中描述算法的效率,特别是时间复杂度和空间复杂度。 它提供了一个上限,描述了随着输入数据大小增加,算法的运行时间或内存使用量的增长速度。...大 O 符号主要用于表达以下内容: 时间复杂度:衡量算法的运行时间如何随着输入大小的变化而变化。例如,时间复杂度为 O(n) 的算法表示其运行时间随着输入大小的线性增长。...空间复杂度:衡量算法的内存使用量如何随着输入大小的变化而变化。例如,空间复杂度为 O(n) 的算法表示其内存使用量随着输入大小的线性增长。...01 O(1) - 恒定时间 运行时间恒定,不随输入大小变化。 典型应用 通过索引访问数组中的元素。 插入或删除哈希表中的一个元素(平均)。...解决某些动态编程问题,如矩阵链式乘法的 native 实现。 05 O(n^3) - 立方时间 运行时间随输入的大小呈立方增长。

    18210

    (面试)场景方案:如何设计O(1)时间复杂度的抽奖算法?

    对于不同概率的抽奖配置,我们也有为它设计出不同的抽奖算法策略。让万分位以下的这类频繁配置的,走O(1)时间复杂度。...如;O(n)、O(logn) 如图; 算法1;是O(1) 时间复杂度算法,在抽奖活动开启时,将奖品概率预热到本地(Guava)/Redis。如,10%的概率,可以是占了1~10的数字区间,对应奖品A。...算法2;是O(n) ~ O(logn)算法,当奖品概率非常大的时候,达到几十万以上,我们就适合在本地或者 Redis 来初始化这些数据存到 Map 里了。...O(1)、O(logn) 时间复杂度的算法,装配和抽奖的实现都是不同的。...小傅哥的星球「码农会锁」有非常多的实战项目,包括业务的5个;大营销(大课)、OpenAI 大模型应用、Lottery、IM、AI 问答助手。

    17610

    【论文阅读笔记】Myers的O(ND)时间复杂度的高效的diff算法

    之前学的基于DP的算法的时间复杂度是O(MN),也就是我们所说的N平方复杂度。对于大量的数据而言,之前的算法速度是很慢的。 编辑图 因此,Myers在论文中引入了编辑图(Edit Graph)的概念。...而且,狄克斯特拉算法哪怕经过了优先级队列的优化,时间复杂度达到了O(ElogE),但是这个仍然比Myers的算法的时间复杂度高。...我们的diff就找到了。 上面两段讲了一个总体的思路,现在就放论文里面的伪代码上来,让读者更加直观地了解到这个算法的工作流程。...The Greddy LCS/SES Algorithm 上述伪代码中,数组V存储的是D-path在不同的对角边上能到达的最远的顶点的x值。...MYERS “An O(ND) Difference Algorithm and Its Variations” https://neil.fraser.name/writing/diff/myers.pdf

    80930
    领券