首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    新年机器学习对你的饭碗暂时没兴趣

    2020年第一天,我们聊聊机器学习面对的问题。 总有人很担心,说机器智能会很快普及,大量现在由人工完成的工作,到了那时就会被机器取代,许多职业马上就要面临整个行业被时代淘汰的窘境。...要回答这个问题,首先就要知道当下机器学习前沿发展的方向,技术的发展总是问题导向的,换句话说,你首先得知道机器学习都在聚焦什么问题,据此推断未来落地的场景,最后才好给出一个具有参考价值的回答。...那么,机器学习现在关注什么问题呢? 划分方法不同,回答也会不一样。普遍公认的是两类问题,有监督学习问题和无监督学习问题,二者的区别可以从字面上看出:就是有没有监督。什么是监督?...以后会深聊,总之,都是思考如何通过数据训练模型,也就是如何“学习”。 那么,机器会很快能替代人类吗?...也许许多我们自觉很简单的工作,譬如说语义识别,对于机器来说却好比登天还难。 就我看来,不管别人如何绘声绘色像是山雨欲来,机器学习当下更接近于“统计”,还远称不上“智能”。

    25220

    Facebook 的应用机器学习平台

    Facebook产品或服务使用的机器学习算法。 C.Facebook内部“机器学习作为服务” Facebook有几个内部平台和工具包,目的是简化在Facebook产品中利用机器学习的任务。...Facebook大多数的机器学习训练通过FBLearner平台完成。这些工具和平台协同工作的目的是提高机器学习工程师的生产力,并帮助他们专注于算法的创新。 ? Facebook机器学习流和架构。...Caffe2是Facebook的内部训练和部署大规模机器学习模型的框架。Caffe2关注产品要求的几个关键的特征:性能、跨平台支持,以及基本的机器学习算法。...在特殊日期,由于用户活动的变化,会导致日负荷高峰,大量的服务器池往往在某些时间段内处于闲置状态,这为非峰值时间提供了大量的计算资源。...对于机器学习应用程序,这提供了一个充分利用分布式训练机制的机会,这些机制可以扩展到大量的异质资源(例如不同的CPU和GPU平台,具有不同的RAM分配)。

    2.3K50

    【人工智能与机器学习】产品文档捉虫活动

    为了提升广大用户的文档的使用体验,现推出【人工智能与机器学习】产品文档定向捉虫活动。邀请大家对指定产品文档进行体验,反馈文档问题就有机会获得腾讯云电子代金券、京东储值卡和神秘好礼!...图片产品范围本次捉虫大赛的检视对象为:人工智能与机器学习产品文档。包括:人脸核身、文字识别、人脸识别、语音识别、语音合成、人体分析、机器翻译、TI-ONE 训练平台、NLP 服务。...您可 登录腾讯云,进入 文档中心,选择 人工智能与机器学习 类别下的产品文档进行体验和捉虫。图片参与方式说明1. 代金券发放对象为:已完成实名认证的腾讯云用户(协作者、子账号、国际账号除外)。...,在 文档活动中心 公布(每月10号左右公布上月获奖结果)。...如您对本活动有任何疑问,欢迎留言反馈。特别声明:腾讯云有权根据自身运营安排,自主决定和调整本活动的具体规则,具体活动规则以活动页公布规则为准。相关规则一经公布即产生效力,您应当予以遵守。

    27530

    机器学习平台的演进史

    第二代机器学习平台侧重于模型:重点是快速创建和跟踪实验,以及部署、监控和理解模型。 第三代机器学习平台侧重于数据:重点是特征和标签的构建以及机器学习工作流的自动化。...这三类机器学习平台并没有绝对的优劣,对于企业而言,也不一定一开始就要选择第三代机器学习平台,凡事都要有一个演进的过程。...如果说草创阶段,大可以选择第一代机器学习平台,先让机器学习应用于业务,产生业务价值;然后再引入第二代机器学习平台机器学习模型能快速且自动化的应用于业务。...第二代机器学习平台:基于模型的解决方案 正是因为第一代机器学习平台有着种种缺陷,于是有人开始讨论“数据科学工作流程”或机器学习开发生命周期 (MLDLC)。...第三代机器学习平台是因为 AI 算法已经足够成熟了,只需要像平台提供一些训练数据就可以让平台完成一次机器学习模型的训练和部署到生产环境。

    2.4K30

    机器学习平台带给QA的挑战

    机器学习平台是一款集数据集、特征工程、模型训练、评估、预测、发布于一体的全流程开发和部署的工作平台。...在谈测试机器学习平台带给QA的挑战之前,先了解一下机器学习平台是什么?...即数据科学家们的日常工作流程有: 问题定义 数据收集 预处理 构造数据集 特征工程 建模、调参 部署、在线验证 循环优化 ---- 机器学习平台的主要业务 简单理解,机器学习平台就是帮助数据科学家工作变得更简单...即机器学习平台主要业务包括(如图2): ? 图2....其它 集成Jupyter Notebook 调度等等 ---- QA面临的挑战 了解了机器学习平台的主要业务功能后,谈谈机器学习平台测试过程中,QA所面临的挑战,以及在实践的所使用的应对方案。 1.

    1.8K10

    机器学习平台的模型发布指南

    导读:近两年,各式各样的机器学习平台如雨后春笋一样出现,极大地降低了从业者的门槛。大家的关注点往往在平台如何能够高效地进行各种花样地数据预处理,如何简单易用地训练出各种模型上。但是在产出模型之后呢?...作为机器学习平台的构建者,在得到应用于不同场景、不同类型的模型后,接下来需要思考的就是模型产生价值的场景,比如: 实时预测服务:兼容不同模型,包装成用于预测的功能,进一步发布面向用户的高时效性的预测服务...所以模型发布常常碰到如下挑战: 平台往往会提供交互式的云端机器学习开发环境,供用户训练自己的模型,所以平台API需要兼容输入输出差异巨大的模型 在通过GraphDef重构模型,Weight复现参数后,作为一个图结构...api,并发布成平台服务,暴露给用户 得力于机器学习框架对运行时环境要求的一致性,平台只需要针对每种机器学习框架,把模型发布代码及依赖打包成一个Docker镜像,就能满足该框架里所有模型的发布需求...实际上,在构建机器学习平台的后期,在平台的功能点趋于稳定,各个功能的模块化日益完善的条件下,下一步必然向着更加自动化进行的,是离不开自身模型的应用的。

    3.5K30

    从零搭建机器学习平台Kubeflow

    总的来说,Kubeflow是 google 开源的一个基于 Kubernetes的 ML workflow 平台,其集成了大量的机器学习工具,比如用于交互性实验的 jupyterlab 环境,用于超参数调整的...作为一个“大型工具箱”集合,kubeflow 为机器学习开发者提供了大量可选的工具,同时也为机器学习的工程落地提供了可行性工具。...1.2 Kubeflow 背景 Kubernetes 本来是一个用来管理无状态应用的容器平台,但是在近两年,有越来越多的公司用它来运行各种各样的工作负载,尤其是机器学习炼丹。...1.3 Kubeflow与机器学习 Kubeflow 是一个面向希望构建和进行 ML 任务的数据科学家的平台。...下图显示了 Kubeflow 作为在 Kubernetes 基础之上构建机器学习系统组件的平台: kubeflow是一个胶水项目,它把诸多对机器学习的支持,比如模型训练,超参数训练,模型部署等进行组合并已容器化的方式进行部署

    6.6K42

    Weka机器学习平台的迷你课程

    那么,在这篇文章中,您接下来将会看到分为十四部分的教您使用Weka平台进行应用式机器学习的速成课程,在这些课程中没有任何数学公式或任何程序代码。...您将了解Weka机器学习工作平台的使用方法,包括懂得如何探索算法和知道如何设计控制实验。 您将知道如何为您的问题创建多个视图以及评估多个算法,并使用统计信息为您自己的预建模问题选择性能最佳的模型。...这个迷你课程不是关于机器学习的教科书。 它将把您从一个懂一点机器学习的开发者转变为一个可以使用Weka平台从头到尾地处理一个数据集,并提供一个预测模型或高性能模型的开发者。...第6课:Weka中的机器学习算法 Weka平台的一个主要优点是它提供了大量的机器学习算法。 你需要了解机器学习算法。 在本课中,您将深入了解Weka中的机器学习算法。...第11课:集成算法之旅 Weka非常容易使用,这可能是和其他平台相比起来的最大优势。 除此之外,Weka还提供了大量的集成机器学习算法,这可能是Weka与其他平台相比的第二大优势。

    5.6K60

    SideCopy多平台攻击活动分析

    一个开源代理),研究人员在其Stager Payload中发现了与威胁组织Transparent Tribe (APT36) 相关的代码,表明SideCopy和APT36使用相同的诱饵和命名约定同时进行多平台攻击...在本文中,我们将深入分析与该组织相关的两个攻击活动,并提供对应的技术细节。...攻击活动分析一 我们所要分析的第一个SideCopy攻击活动主要通过网络钓鱼链接进行传播,该链接将下载一个名为“Homosexuality – Indian Armed Forces.”的文档。...攻击活动分析二 在我们所观察到的第二个SideCopy攻击活动中,共享IP的不仅只有域名,而且还有C2基础设施。...除了这两个活动之外,研究人员也发现了该威胁组织同时针对Windows和Linux平台的恶意活动,相关的入侵威胁指标IoC请查看文末附录内容。

    30210

    苹果开放机器学习API,但是没有看到苹果的机器学习开发平台

    这次,苹果不仅在iOS的自家应用中更多使用了机器学习,还把机器学习功能作为iOS API的一部分向开发者开放,希望开发者们也用机器学习的力量开发出更好的应用程序。...iOS中的机器学习 ?...在iOS的本身功能里,苹果已经尝试用机器学习带来更好的用户体验,比如在iPad上利用机器学习识别手写便签的文本、在iPhone上通过学习和预测用户的使用习惯来让iOS更省电、在照片app里自动创建的回忆相册以及面部识别...苹果没有做大而全的人工智能平台 去年苹果收购了西雅图的机器学习初创公司Turi以后,继续在西雅图成立了自己的人工智能研究实验室,聘请了华盛顿大学教授Carlos Guestrin作为机器学习总监。...所以苹果没有发布自己的机器学习开发平台、没有发布开发硬件,也没有对外公布是否挖了机器学习专家到自己团队,在这种态度下就都合情合理了。

    1.5K60

    活动学习笔记

    活动图显示与文本事件流相同的信息。我们在业务模型中用活动框图描述业务过程的工作流。 2 活动图的组成要素 活动图的组成要素主要有:起始点和终止点、活动、迁移、决策框、分支和汇聚。...终止点:指明活动的结束位置;一个活动图可以有多个结束点,不同的结束点表达系统执行后可以达到不同的结果状态。 2.2 活动 活动活动图的基本组成部分,一个活动图至少应该包括一个活动。...如下图中,活动2与活动3可以并行执行,但它们都必须在活动1完成之后才能执行 约束规则:只允许一个活动引发分叉 2.6 汇聚(joint) 定义:一种用于标识需同步活动的语法/语义符号。...语义:汇聚也没有任何动作,仅仅表明汇聚前变迁流出的活动必须全部执行完才能执行汇聚后变迁指向的 活动。如下图中,活动2与活动3同步执行完成后,活动4才能执行。 约束规则:只允许汇聚到一个活动。...3 带泳道的活动图 4 活动图建模原则 “活动图” 比较直观易懂;与传统的流程图十分的相近,只要能够读懂活动图,就不难画出活动图。

    1.7K10

    机器学习平台化发展趋势

    很有可能,最重要的是机器学习系统的平台化,以及围绕平台化展开的一系列工作。 什么是机器学习平台? 什么叫做“机器学习系统的平台化”呢?...简单来说,就是要把机器学习系统做成一个简单易用的、更加通用的平台,让各种业务都能够方便地接入这个平台,从而享受到机器学习带来的红利。...想要使用机器学习技术的业务方可以看做是想要在电商平台上开店的小商家,而机器学习平台无疑就是电商平台了。作为一个商家,如果选择自己建网站开店,就好比每个业务自己搭建机器学习流程,显然是一个低效的选择。...构建机器学习平台的挑战 从上面的图可以看出,在机器学习平台的支持下,业务接入机器学习功能变得非常简单,在理想状况下,只需要点几个按钮,写一些配置文件就够了。...但需要指出的是,在实现一个机器学习平台的时候,上面提到的平台层的东西不一定都要自己来做,一些机器学习核心组件的部分可以充分利用一些开源工具,甚至一些开放平台来做,例如Amazon、微软以及阿里的云服务都提供了机器学习的组件

    3.4K50

    软考 - 07 机器学习应用开发平台

    文章目录 题目 问题1 【答案一】 问题:2 【答案二】 ---- 题目 某公司拟开发一套机器学习应用开发平台,支持用户使用浏览器在线进行基于机器学习的智能应用开发活动。...该平台的核心应用场景是用户通过拖拽算法组件灵活定义机器学习流程,采用自助方式进行智能应用设计、实现与部署,并可以开发新算法组件加入平台中。...,需要在15秒内发现错误并启用备用系统; (f)在正常负载情况下,机器学习流程从提交到开始执行,时间间隔不大于5秒; (g)平台支持硬件扩容与升级,能够在3人天内完成所有部署与测试工作;...; (k)平台应该与目前国内外主流的机器学习应用开发平台的界面风格保持一致; (l)平台提供机器学习算法的远程调试功能,支持算法工程师进行远程调试。...请针对平台的核心应用场景,从机器学习流程定义的灵活性和学习算法的可扩展性两个方面对三种架构风格进行对比与分析,并指出该平台更适合采用哪种架构风格。 【答案二】 更适合采用解释器风格。

    1.4K40

    新年福利 | 2019深度学习工具汇总

    深度学习作为机器学习的一个新领域,它的重点是学习深层次的数据模型,其主要灵感来自于人脑表面的深度分层体系结构,深度学习理论的一个很好的概述是学习人工智能的深层架构。...一类是为了使用GPU来替代numpy;另一类是一个深度学习援救平台:提供最大的灵活性和速度。 ? 以深度学习来说,可以使用torch.nn包来构建神经网络。...而且在Caffe应用中可以使用CPU中央处理器和GPU图形图像处理器进行学习,而且两个处理器可以来回切换,只要通过在GPU机器上设置一个指令就可以,而且GPU的使用在普遍增加,因为其可以给予网络的训练速度...TensorFlow是一个异构分布式系统上的大规模机器学习框架,移植性好(小到移动设备如手机,大到大规模集群,都能支持),支持多种深度学习模型。...有兴趣可以体验下PlayGround,其是一个用于教学目的的简单神经网络的在线演示、实验的图形化平台,非常强大地可视化了神经网络的训练过程。

    58640
    领券