首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《 Python 机器学习基础教程》总结

    学完了本书介绍的所有强大的方法,你现在可能很想马上行动,开始用你最喜欢的算法来解决数据相关的问题。但这通常并不是开始分析的好方法。机器学习算法通常只是更大的数据分析与决策过程的一小部分。为了有效地利用机器学习,我们需要退后一步,全面地思考问题。首先,你应该思考想要回答什么类型的问题。你想要做探索性分析,只是看看能否在数据中找到有趣的内容?或者你已经有了特定的目标?通常来说,你在开始时有一个目标,比如检测欺诈用户交易、推荐电影或找到未知行星。如果你有这样的目标,那么在构建系统来实现目标之前,你应该首先思考如何定义并衡量成功,以及成功的解决方案对总体业务目标或研究目标有什么影响。假设你的目标是欺诈检测。

    07

    [编程经验] 拉勾网爬虫数据的后续处理

    上一篇我们介绍了如何爬拉勾的数据,这次介绍一下如何分析爬下来的数据,本文以自然语言处理这个岗位为例。 上次那个爬虫的代码有一点问题,不知道大家发现没有,反正也没有人给我说。。然后后面我把我最后改好的代码附在本文的最后。 本文主要分析的是岗位职责和岗位要求,基本思路是先分词,然后统计词频,最后最词云展示出来。先看下效果 从这个图可以看出来,自然语言处理大多数需要掌握深度学习,需要用深度学习去解决问题,然后是工作经验,项目经验,以及对算法的理解。 首先分词,要正确分词,需要有一份高质量的词典,因为在岗位

    08
    领券