云计算行业正逐渐向智能的方向转变。虽然计算、存储和网络仍然是云供应商的主要收入来源,但机器学习也正慢慢成为当代云计算的焦点。 以下是五种被机器学习高度影响的云服务: 认知计算(Cognitive Co
责编 | 王子彧 出品 | CSDN(ID:CSDNnews) 最近的 AI 圈,真是“热闹得一塌糊涂”: 输入一句话就能生成图像的 Stable Diffusion 火爆数月;这边大家不亦乐乎地和智能语音助手聊天…AI 正在开启新时代——从高深莫测的黑科技,变身为辅助工作、生活不可或缺的重要组成部分。 模型变大,算法繁杂 AI 技术开发平台是关键 如果说,简单的 AI 功能试用是新手,熟练掌握 AI 开发是出师,深入行业应用就是真正的大师了。然而,AI 开发过程中如果没有合适的平台,开发过程就会繁琐,
机器之心原创 作者:泽南 从自动驾驶到推荐系统,机器学习的开发现在都可以用统一的平台完成了。 不同机器学习任务,用统一的平台实现,速度成倍提升,GPU 调度 0 碎片,这是火山引擎最新开放的技术。 7 月 20 日,火山引擎 FORCE 原动力大会在北京举行。在活动中,品牌发布刚一年的火山引擎公布了一系列最新能力。 在 AI 方面,火山引擎推出了机器学习与智能推荐平台多云部署解决方案。据火山引擎机器学习系统负责人项亮介绍,字节跳动内部抖音、西瓜视频、飞书等不同业务的 AI 训练任务,都基于统一的训练平台提交
Facebook昨天第一次正式介绍了FBLearner Flow,一个可以为全公司员工管理机器学习模型的机器学习软件。换句话说,这是一个可以自己制造人工智能的人工智能,你可以理解为传说中的人工智能母体。 它与其他基于云端的机器学习服务有点相似,例如微软的Azure机器学习或者Airbnb的开源Airflow,不过,FBLearner Flow是根据Facebook自己的业务而进行最优化的,装满了Facebook工程师开发的算法,让公司其他人都可以为自己的模型而使用该平台。 “公司超过25%的人都在使用,
机器学习是当前领先的 AI 范式,到目前为止取得了非常可观的成就,当前机器学习也是一个非常时髦的话题。 2021 年 12 月火山引擎云产品发布会上正式发布了 AI 全系产品,其中的 AI 开发平台就是全流程、高效率、高性能的机器学习平台。该平台提供从数据准备到模型训练、再到推理整个服务;通过 RDMA 网络直连上万张 GPU 和自研的分布式训练框架,可以将 GPU 的资源利用率加速到 90% 以上,极大提升性能的同时降低了使用成本;提供完善的工具链、全功能在线的 IDE,包括端云协同的开发环境,以及本
机器学习(Machine Learning)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具备智能的根本途径,其应用遍及人工智能的各个领域。 多年来,微软一直专注于机器学习的研究,并将机器学习广泛应用到产品和服务中,取得了一系列的显著成果。微软的人工智能助力小冰在机器学习技术的帮助下,具备了情景对话的能力,并且能够识别狗的种类以及进行简单的自述;同样,得益于机器学习技术的进步,微软最新发布的Skype Transl
导读:深度学习技术已经在互联网的诸多方向产生影响,每天科技新闻中关于深度学习和神经网络的讨论越来越多。深度学习技术在近两年飞速发展,各种互联网产品都争相应用深度学习技术,产品对深度学习的引入也将进一步影响人们的生活。
作者|Nikhil Dandekar 翻译|薛命灯 2015 年,Quora 的工程主席 Xavier Amatriain 非常精彩地回答了 Quora 上的一个问题:“Quora 在 2015 年将如何应用机器学习”。从那个时候开始,机器学习在 Quora 的应用得到了长足的发展。他们不仅更加深入地为已有的机器学习应用构建更大更好的模型,而且将机器学习技术应用到更多领域。 而在今年,Quora 的工程经理 Nikhil Dandekar 在 Quora 上回答了类似的问题:“Quora 在 2017 年将
【新智元导读】微软前副总裁S. Somasegar从智能应用开发的角度,总结了2016机器学习和人工智能的5大发展趋势:算法和数据结合的微智能,将能灵活地在应用中得到融合;让“每一个应用都变得智能”;人工智能的黑箱将被揭开;现阶段的机器学习和人工智能中,人类的作用不可替代;最后,他认为对于企业来说,不是从一开始就需要机器学习。 风险投资集团Madrona不久前在西雅图举办了一场机器学习与人工智能峰会,汇集了智能应用生态系统中不少大公司和初创企业。 本次峰会的一个重要的议题来自对与会者的问卷调查。在调查中,所
△ 题图来自TechCrunch 晓查 李林 编译自 Quora 量子位 出品 | 公众号 QbitAI 昨天,美国问答网站Quora宣布完成了8500万美元的D轮融资,估值翻倍。这样说来,Quora现在的估值应该是18亿美元,成了一只新的独角兽。 在过去一年里,Quora除了继续扩大用户规模之外,还开始了商业化尝试,机器学习技术在这家公司业务上的应用,也增加了很多,不仅已有的机器学习应用用上了更大更好的模型,机器学习的使用领域也有扩张。 那么,Quora现在是怎样使用机器学习的?其机器学习负责人Nik
文 / Yue Weng,Huaixiu Zheng,Anwaya Aras,Franziska Bell
此次苹果WWDC大会,苹果不仅在iOS的自家应用中更多使用了机器学习,还把机器学习功能作为iOS API的一部分向开发者开放,希望开发者们也用机器学习的力量开发出更好的应用程序。 除了新硬件和新系统,
2016 年是变革的一年,AlphaGo 战胜李世石,给我们带来了很大的震撼。Gartner 的这篇最新报告,所提出的 2016 年的十大趋势是今天数字业务的主要推动力量。这包括了终端网络、3D 打印、万物互联、高等机器学习、自主代理、物联网等。我们预期,在未来的 5 到 10 年里,这些前沿科技会逐渐从研究院走向产业化,给我们带来和现在相比完全不同的世界。
7月20日的火山引擎原动力大会上,火山引擎发布全新Slogan“云上增长新动力”,并推出以云为底座的一系列产品解决方案,包括企业上云和智能营销通用方案,以及覆盖金融、汽车、消费、文娱、医疗、通信传媒六大行业的云上增长方案。 火山引擎机器学习系统负责人项亮在大会上正式发布并介绍了机器学习与智能推荐平台多云部署解决方案。项亮介绍,抖音集团旗下不同业务的不同推荐系统,都是基于一个统一的训练平台提交,由统一的训练系统训练。现在,这种模式由火山引擎对外开放,为企业提供开放的AI基建,帮助企业更专注于业务。 抖音、头
在近期结束的CVPR2016(2016年国际计算机视觉与模式识别会议)上,机器学习无疑是最大的主角,谷歌以及与其合作的斯坦福大学、爱丁堡大学、UCLA、牛津大学、约翰霍普金斯大学的论文都涉及到了深度学
11 月 8-9 日,CSDN 和 AICamp 联合举办的AI开发者大会在京举行。领英(LinkedIn)人工智能研发总监张梁发表了《AI 在大规模招聘求职上的应用》的主题演讲,并接受了 AI科技大本营的专访。
随着数字化和计算能力的发展,机器学习(Machine Learning)技术在提高企业生产力方面所涌现的潜力越来越被大家所重视,然而很多机器学习的模型及应用在实际的生产环境并未达到预期,大量的ML项目被证明是失败的。从机器学习的发展历程来看,早期ML社区广泛关注的是ML模型的构建,确保模型能在预定义的测试数据集上取得较好的表现,但对于如何让模型从实验室走向用户的桌面,并未大家所关注。
经济新常态下,如何对海量数据进行分析挖掘以支撑敏捷决策、适应市场的快速变化,正成为企业数字化转型的关键。机器学习算法能识别数据模型,基于规律完成学习、推理和决策,正广泛的应用在金融、消费品与零售、制造业、能源业、政府与公共服务等行业的各种业务场景中,如精准营销、智能风控、产品研发、设备监管、智能排产、流程优化等。企业传统的机器学习虽然能有效支撑业务决策,但由于严重依赖数据科学家,其技术门槛高、建模周期长的特点正成为企业实现数据驱动的阻碍。
2019 谷歌开发者大会于 9 月 10 日和 11 日在上海举办,大会将分享众多开发经验与工具。在第一天的 KeyNote 中,谷歌发布了很多开发工具新特性,并介绍而它们是如何构建更好的应用。值得注意的是,TensorFlow 刚刚发布了 2.0 RC01 版和 1.15,谷歌表示 1.15 是 1.x 的最后一次更新了。
随着广告和内容等推荐场景的扩展,算法模型也在不断演进迭代中。业务的不断增长,模型的训练、产出迫切需要进行平台化管理。vivo互联网机器学习平台主要业务场景包括游戏分发、商店、商城、内容分发等。本文将从业务场景、平台功能实现两个方面介绍vivo内部的机器学习平台在建设与实践中的思考和优化思路。
本文讨论了人工智能(AI)的真假问题,作者认为真正的AI应该能够自主思考,而不仅仅是根据人类编写的脚本工作。作者认为,通用人工智能(AGI)这一愿景值得怀疑,因为如果机器能够自主思考,那么他们也应该享有权利。此外,作者还提到了对抗网络等新兴技术,这些技术可能会使AI之间的智慧较量变得更为复杂。
在 Forrester 最新发布的《Now Tech: Predictive Analytics And Machine Learning In China, Q3 2020》报告中,腾讯云在国内众多预测分析和机器学习领域厂商中遥遥领先,跃居第一阵营。 Forrester Now Tech是 Forrester 机构在中国乃至全球范围内具有影响力最大、市场认可度最高的报告系列之一,旨在为企业 IT 决策、产品选型等提供基于市场规模、产品功能维度的价值参考。 作为中国最大的人工智能服务提供商,腾讯云在机器学习
今日,微软在开发者日上发布了AI开发者平台。 微软还提到,旗下产品都可以本地直接处理AI任务。另外Win10系统将会Visual Studio 15.7 预览版上增加了ONNX文档到UWP应用里,可自
在数据的世界中,机器学习已经成为不可或缺的工具。机器学习可以帮助发现隐藏在大量数据中的特定知识。很多时候,这些知识都不是人类能轻易分析得出的,它展示了大量事实之间的内部联系。但是如果我们需要这些隐藏知识辅助做决策,机器学习建模就成为了一个非常有效的手段。
机器之心原创 作者:高静宜 3 月 28 日,腾讯云宣布推出深度学习平台 DI-X(Data Intelligence X),为机器学习、深度学习用户提供一站式服务,为其在 AI 领域的探索降低门槛并提供最流畅的体验。DI-X 平台基于腾讯云的大数据存储与处理能力,集成 Caffe、TensorFlow、Torch 主流深度学习框架,主打行云流水的拖拽式操作,具备强大的业内开源及腾讯自研算法库和模型库。DI-X 平台的推出是腾讯在 AI 领域长线布局中不可缺少的一环,也宣告腾讯云在 AI 布局的全面加速。
【新智元导读】滴滴出行研究院副院长叶杰平在新智元2017开源·生态AI技术峰会上揭秘 AI 技术在滴滴出行具体场景中的应用。从目的地预测、智能派单、路径规划、ETA、供需预测、拼车规划及服务评价等多个环节中,可以看出滴滴大脑在大数据、机器学习和云计算几个技术要素上持续发力,而海量出行数据已经成为滴滴出行决胜 AI+ 时代的最有力武器。 “互联网时代的上半场结束了,下半场的角逐一定是在人工智能上。”滴滴出行CEO程维对此坚信不疑。 在有中国“AI 春节”之称的新智元2017开源·生态 AI 技术峰会上,滴滴出
【AI100 导读】Google Cloud Next'17 大会刚刚宣布了对 Kaggle 的收购,就启动了总奖金额高达200万美元的谷歌云机器学习初创大赛。看来不但机器学习的关注度正在节节高升,
更低成本、更优效果,也就是“降本增效”,是所有广告投放追求的目标。广告技术的发展正让“降本增效”越来越具体、越来越可以量化和感知,比如目前互联网广告平台开始以 GMV(成交金额)或 ROI(投入产出比)为营销效果的评估标准。 一次更高效的广告投放,本质上是在合适的场景,让对的广告出现在对的人面前。这离不开广告平台对广告内容和用户群体的深刻理解,并在他们之间达成更准确的匹配。 腾讯广告已经为此交出了一份答卷:首先,以国际领先的混元 AI 大模型助力系统深刻理解广告内容,其次以精排大模型提升广告和用户的匹配准确
AI科技评论消息,今天凌晨的苹果WWDC主题演讲无疑是果粉的狂欢,它很有可能被捧为最棒的WWDC。这次大会苹果有6大更新,包括了iOS 11、新macOS、升级版Macbook、惊艳的iMac Pro
【导读】2017年9月,Uber 在技术社区发表了一篇文章向大家介绍了 Uber 的机器学习平台 —— Michelangelo。随着平台的日渐成熟,Uber 的业务数量与能力也随之增长和提升,机器学习在整个公司的应用范围越来越广。在本篇文章中, 我们将为大家总结 Michelangelo 在过去一年的时间里取得的成果,回顾Michelangelo 的发展历程,并深入探讨 Uber 机器学习平台当前的发展方向和未来目标。
Cloudera在今天主要阐述了将要推出的统一旗舰产品CDP(Cloudera Data Platform),它也是Cloudera新兴的“企业数据云”战略的核心。同时宣布的还有他们将继续支持现有的CDH和HDP平台一直到2022年,同时在这3年对现有的产品还会进行交叉组合。
原文地址:https://devblogs.microsoft.com/dotnet/announcing-ml-net-1-0/
AiTechYun 编辑:nanan 如果有一个技术术语能让所有与该行业相关的人都喜欢上,那么它就必须是“机器学习”。“机器学习”缩写为ML,它以某种方式几乎影响了每个行业。从检测肿瘤和癌症的无人诊断
创新奇智的 Orion 分布式机器学习平台是一个企业级的端到端机器学习解决方案,它通过整合智能资源调度中心(IRC)、智能数据自动化中心(DAC)和自动化机器学习等关键组件,为企业提供一站式的 AI 解决方案开发服务。Orion 平台的设计理念是为了满足数据科学家、数据工程师和 AI 开发者在快速构建 AI 应用的需求,实现端到端的 AI 开发服务,从而支持数据处理、模型训练到模型部署的全流程 AI 开发任务。
AI 研习社按:互联网影响着社会的方方面面,作为 O2O 和共享经济的代表,美团外卖经过几年高速发展,以每天配送超过千万份订单、几十万骑手的规模,成为世界上最大的配送平台。实际上,看上去劳动密集型的外卖行业,其实背后蕴藏着大数据、云计算、物联网、人工智能等高新技术,是这些高科技,使美团外卖能够在激烈竞争中逐渐脱颖而出。
刚刚度过了一个特殊的春节,美美在这里给大家拜个晚年。相信大家作为各公司技术团队的骨干,应该也和我的同事们一样,正在紧张忙碌地用技术支撑着各方面的工作,同舟共济,抗击疫情吧。请大家注意做好个人和家庭防护,多加强运动,提高免疫力。让我们一起为武汉加油,愿疫情早日结束!
今天的WWDC,除了年度硬件、系统更新,大家更为关注的是苹果是否也去选择“AI优先”的战略,因为它的老对手微软和Google早已经走上这条路了。 两个半小时的Keynote下来,库克一句都没有提到AI相关的战略,而只是在最后公布了剧透已久的“重磅”新品:Siri智能音箱——HomePod。 HomePod 智能音箱 很显然,这两年来面对Amazon Echo与Google Home在家用语音交互服务上的攻城略地,苹果是坐不住了。HomePod就此诞生: 它的外观取材于苹果2013年发布的Mac
2019 AI开发者大会是由中国IT社区 CSDN 主办的 AI 技术与产业年度盛会,2019 年 9 月 6-7 日,近百位中美顶尖 AI 专家、知名企业代表以及千余名 AI 开发者齐聚北京,进行技术解读和产业论证。
【新智元导读】 6日凌晨的苹果开发者大会(WWDC)上,机器学习成为贯穿始终的热词。除了按照惯例对苹果旧产品的系统升级,发布新一代Mac和Ipad Pro外,苹果在人工智能上还有大动作:发布人工智能开发平台,并称在iphone上的图像识别快谷歌 Pixel 6倍。另外,受到业界广泛关注的苹果智能音箱终于发布,是以“音乐的名义”。一起来看新智元带来的最新报道。 2017年的WWDC,苹果有一个关键词——机器学习。从库克一开始的演讲,到各产品线发布的新产品,再到合作伙伴演示Demo,无一例外的,他们都谈到了机器
点击上方“LiveVideoStack”关注我们 ▲扫描图中二维码或点击阅读原文▲ 了解音视频技术大会更多信息 // 编者按:Netflix探索了许多通过机器学习提升视频生产效率的方式,比如对话搜索和视频搜索。但由于不同项目均独立开发,维护成本巨大。目前,Netflix正在着手解决这一问题。本文来自Netflix科技博客。 文 / Guru Tahasildar, Amir Ziai, Jonathan Solórzano-Hamilton, Kelli Griggs, Vi Iyengar 译
Nextiva宣布正式推出基于人工智能(AI)和机器学习的新平台NextOS。新的Nextiva平台是一款全功能的通信软件,目前正为三种新产品提供服务:Nextiva Service CRM,Nextiva Chat和Nextiva Surveys。这些产品与Nextiva Voice一起工作,提供Nextiva所谓的“真正的一体化沟通和对客户的全面洞察”。
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载。
近日,滴滴研究院副院长叶杰平在上海一场内部分享会上详细解读了滴滴大脑,这是外部首次窥探到较为完整的滴滴算法世界,并且一直潜水的产品“九霄”也首次露出真容。 滴滴大脑由三部分组成 叶杰平将滴滴大脑这个智能系统分为三部分,分别是大数据、机器学习和云计算。 其中大数据就像工业革命时代的煤一样举足轻重,人工智能需要数据进行训练,纵观应用级深度学习的成功案例,他们都获得了海量数据,像谷歌和Facebook这样的公司都可以获取大量数据,这种优势让他们可以创造更有效的新工具。 而机器学习是人工智能的核心,一
近日,滴滴研究院副院长叶杰平在上海一场内部分享会上详细解读了滴滴大脑,这是外部首次窥探到较为完整的滴滴算法世界,并且一直潜水的产品“九霄”也首次露出真容。
哪一些开源技术会引领下一次的技术潮流? 这里有10个预言,来预测其发展趋势。 [图片] 图片来源于网络 技术总是在不断
由腾讯微信事业群和清华大学联合举办,腾讯云TI平台中的机器学习平台(TI-ONE)提供大赛资源支持的2021中国高校计算机大赛—微信大数据挑战赛正如火如荼的进行中。
【新智元导读】Tensorflow凭“谷歌”“开源”两个标签自2015年底发布以来便名震深度学习圈。而前年底Facebook就打造其专属ML平台FBLearner Flow,大幅提高员工工作效率。今天,FB工程师首次披露该平台细节,公司意欲进一步提高速度、效率,迈向ML自动化。虽然目前仍限内部使用,但不排除FB这款“Flow”未来也将开源。两大巨头的两股“Flow”如何较量?先从了解FBLearner Flow开始。 Facebook 现在在信息推荐、过滤攻击言论、推荐热门话题、搜索结果排名等等已经使用了
由腾讯微信事业群和清华大学联合举办,腾讯云TI平台(TI-ONE)提供大赛资源支持的2021中国高校计算机大赛—微信大数据挑战赛正如火如荼的进行中。 本次大赛是以企业真实场景和实际脱敏数据为基础、面向全球开放的算法竞赛。旨在通过竞技的方式,提升人们对数据分析与处理的算法研究与技术应用能力,探索大数据的核心科学与技术问题,尝试创新大数据技术,推动大数据的产学研用。 为了给与选手们更好的参赛体验以及保护大赛数据的安全性,在复赛阶段,微信大数据挑战赛携手腾讯云机器学习平台(以下称TI-ONE),为复赛选手争取到了
全球领先的信息技术研究和顾问公司Gartner近日重点介绍了对大多数企业具有战略性意义的2017年重大科技发展趋势。
大家好,我是来自Google Research的高级软件工程师汪启扉,首先感谢LiveVideoStack邀请我在此处演讲。今天,我的主题是高效终端设备机器学习的最新进展 。
领取专属 10元无门槛券
手把手带您无忧上云