首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python机器学习中的特征选择

/feature-selection-machine-learning-python/ 译者微博:@从流域到海域 译者博客:blog.csdn.net/solo95 Python机器学习中的特征选择 您用来训练机器学习模型的数据特征...不相关或部分相关的特征可能会对模型性能产生负面影响。 在这篇文章中,您将会了解自动特征选择技术,您可以使用scikit-learn在Python中准备机器学习(所使用的)数据。 让我们开始吧。...[Feature-Selection-For-Machine-Learning-in-Python.jpg] Python中机器学习的特征选择 Baptiste Lafontaine的照片,保留一些权利...您可以在文章"Feature selection"了解有关使用scikit-learn进行特征选择的更多信息。 机器学习的特征选择 本节列出了Python中用于机器学习的4个特征选择方案。...您了解了使用scikit-learn在Python中准备机器学习数据的特征选择。

4.5K70
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习教材中的 7 大经典问题

    一、神经网络不宜超过三层 这是最有名错误判断,现在的教科书几乎已经不再有这样的结论,但如果看15年、20年前的机器学习教科书,会有一个很有趣的结论:神经网络不能超过三层。...四、集成学习获得最好学习效果 第四个叫做集成学习,这个技术在各种数据挖掘比赛中特别有用,比如近些年KDD CUP的冠军几乎都是采用集成学习。什么是集成学习?...但在现实中,企业做机器学习追求的不是用无限的资源做尽可能好的效果,而是如何充分利用有限资源,获得最好效果。假设企业只有两台机器,如何用这两台机器获得最好的效果呢?...如果采用集成学习,用两台机器跑五个模型,就要把两台机器分成五份,每个模型只能用0.4台机器去跑,因此跑的数据量就有限。那如果换种方式,不用集成学习,就用一个模型去跑,就能跑5倍的数据。...在拿过去预测未来的应用场景下,有的时候过拟合不一定不好,要根据实际情况来看。 今天与大家分享了教科书中的几个经典问题。其实在实际工业应用中,我们不会完全按照教科书中的方式去实践。

    1.1K80

    机器学习中的常见问题——损失函数

    一、分类算法中的损失函数 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J(w)=∑iL(mi(w))+λR(w) J\left ( \mathbf{w} \right...: 0-1损失 Log损失 Hinge损失 指数损失 感知损失 1、0-1损失函数 在分类问题中,可以使用函数的正负号来进行模式判断,函数值本身的大小并不是很重要,0-1损失函数比较的是预测值fw(x(...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。...( \mathbf{x}^{\left ( i \right )} \right )=\mathbf{w}^T\mathbf{x}^{\left ( i \right )}+\gamma 并在上述的最优化问题中增加...( \mathbf{x}^{\left ( i \right )} \right )y^{\left ( i \right )} \right ) \right ] 假设f~\tilde{f}表示已经学习好的函数

    1.1K40

    机器学习教材中的 7 大经典问题

    一、神经网络不宜超过三层 这是最有名错误判断,现在的教科书几乎已经不再有这样的结论,但如果看15年、20年前的机器学习教科书,会有一个很有趣的结论:神经网络不能超过三层。...四、集成学习获得最好学习效果 第四个叫做集成学习,这个技术在各种数据挖掘比赛中特别有用,比如近些年KDD CUP的冠军几乎都是采用集成学习。什么是集成学习?...但在现实中,企业做机器学习追求的不是用无限的资源做尽可能好的效果,而是如何充分利用有限资源,获得最好效果。假设企业只有两台机器,如何用这两台机器获得最好的效果呢?...如果采用集成学习,用两台机器跑五个模型,就要把两台机器分成五份,每个模型只能用0.4台机器去跑,因此跑的数据量就有限。那如果换种方式,不用集成学习,就用一个模型去跑,就能跑5倍的数据。...在拿过去预测未来的应用场景下,有的时候过拟合不一定不好,要根据实际情况来看。 今天与大家分享了教科书中的几个经典问题。其实在实际工业应用中,我们不会完全按照教科书中的方式去实践。

    51520

    机器学习中的类不平衡问题

    例如有998个反例,但正例只有2个,那么学习方法只需返回一个永远将新样本预测为反例的学习器,就能达到99.8%的精度;然而这样的学习器往往没有价值,因为它不能预测出任何正例。...类别不平衡(class-imbalance)就是值分类任务中不同类别的训练样例数目差别很大的情况。不是一般性,本节假定正类样例较少,反类样例较多。...在现实的分类任务中,我们经常会遇到类别不平衡,例如在通过拆分法解多分类问题时,即使原始问题中不同类别的训练样例数目相当,因此有必要了解类别不平衡性处理的基本方法。...)”,即增加一些正例使得正、反例数目接近,然后再进行学习;第三类则是直接基于原始训练集进行学习,但在用训练好的分类器进行预测时,将式(3)嵌入到其决策过程中,称为“阈值移动”(thresholding-moving...值得一提的是,“再缩放”也是“代价敏感学习”(cost-sensitive learning)的基础,在代价敏感学习中将式(3)中的 用 代替即可,其中 是将正例误分为反例的代价, 是将反例误分为正例的代价

    61010

    机器学习中的常见问题——损失函数

    一、分类算法中的损失函数 image.png 1、0-1损失函数 image.png 2、Log损失函数 2.1、Log损失 image.png 2.2、Logistic回归算法的损失函数 image.png...2.3、两者的等价 image.png 3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) 运用Hinge...3.2、SVM的损失函数 image.png 3.3、两者的等价 image.png 4、指数损失 4.1、指数损失 指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下: exp(−m) 运用指数损失的典型分类器是...4.2、AdaBoost基本原理 image.png 4.3、两者的等价 image.png 5、感知损失 5.1、感知损失 感知损失是Hinge损失的一个变种,感知损失的具体形式如下: max(0,−...损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。

    1.7K70

    分布式机器学习中的拜占庭问题

    机器之心分析师网络 作者:仵冀颖 编辑:H4O 本文重点探讨分布式学习框架中针对随机梯度下降(SGD)算法的拜占庭问题。...在拜占庭威胁模型中,计算节点可以任意和恶意地行事。机器之心在前期的文章中也探讨过分布式学习中的拜占庭问题,主要针对联邦学习中的拜占庭问题。...在这样的背景下,分布式学习问题引起了研究人员以及工程技术人员的广泛关注。分布式学习通过聚合多台机器中的数据、模型、参数等实现协同学习一个强大而有效的模型。...不过,由于拜占庭节点的问题,传统分布式学习中假设全部节点都是真实可靠以及正确的这一点是不成立的。 本文探讨了基于 SGD 方法的分布式机器学习中的拜占庭问题。...,在实际应用场景中这显然是很难保证的,而非独立同分布数据中的拜占庭问题的攻击和抵御问题显然更加复杂。如何进一步改进方法或框架,使分布式机器学习更加具有实用性,有待更深入的研究。

    78710

    Go中的机器学习与Python Sidecar

    机器学习模型的能力正在迅速提升;我们如何在 Go 应用程序中利用这些强大的新工具? 译自 ML in Go with a Python sidecar,作者 Eli Bendersky。...在这篇文章中,我将为 Go 开发人员介绍一些在他们的应用程序中使用机器学习模型的方法——定制化程度逐渐提高。...此时我们可以考虑训练我们自己的 LLM——这非常昂贵,但也许别无选择。训练通常涉及大型机器学习框架之一,如 TensorFlow、JAX 或 PyTorch。...还值得注意的是,我们总共编写了不到 100 行 Python 代码——其中大部分是将教程中的代码片段拼凑在一起。...我添加了一个简单的 echo 端点来测量这种影响;看一下测试它的 Go 客户端;在我的机器上,从 Go 向 Python 服务器发送 JSON 请求并返回 echo 响应的延迟平均约为 0.35 毫秒。

    6110

    实用的机器学习问题

    什么是机器学习?我们也许可以阅读机器学习的权威定义,实际上,机器学习由解决的问题来定义。因此,理解机器学习的最好的方法就是看一些例题。...在这篇文章中,我们首先会先看一些在现实中常见并且容易理解的机器学习例题。接下来,我们将研究机器学习问题的标准分类(命名系统),并学习如何将问题确定为这些标准案例之一。...计算机视觉和自然语言处理的问题都是AI-Complete问题的例子,当然它也可能被视为机器学习问题的特定领域类别。 2013年机器学习十大问题是什么?...这个Quora问题有一些很好的答案,并列出了一些实用机器学习问题的大类。 我们已经回顾了生活中的机器学习问题的一些常见例子以及机器学习问题类的分类。...现在我们有信心评价某个问题是否是一个机器学习问题,并可以从问题描述中摘取元素,并确定它是一个分类,回归,聚类还是规则提取类型的问题。 您知道一些更真实更实用的机器学习问题吗?留下评论,分享你的想法。

    1.1K70

    机器学习中的七大经典问题

    一、神经网络不宜超过三层 这是最有名错误判断,现在的教科书几乎已经不再有这样的结论,但如果看15年、20年前的机器学习教科书,会有一个很有趣的结论:神经网络不能超过三层。...四、集成学习获得最好学习效果 第四个叫做集成学习,这个技术在各种数据挖掘比赛中特别有用,比如近些年KDD CUP的冠军几乎都是采用集成学习。什么是集成学习?...但在现实中,企业做机器学习追求的不是用无限的资源做尽可能好的效果,而是如何充分利用有限资源,获得最好效果。假设企业只有两台机器,如何用这两台机器获得最好的效果呢?...如果采用集成学习,用两台机器跑五个模型,就要把两台机器分成五份,每个模型只能用0.4台机器去跑,因此跑的数据量就有限。那如果换种方式,不用集成学习,就用一个模型去跑,就能跑5倍的数据。...在拿过去预测未来的应用场景下,有的时候过拟合不一定不好,要根据实际情况来看。 今天与大家分享了教科书中的几个经典问题。其实在实际工业应用中,我们不会完全按照教科书中的方式去实践。

    1.1K120

    解决机器学习中不平衡类的问题

    这些场景通常发生在检测的环境中,比如在线的滥用内容,或者医疗数据中的疾病标记。 现在,我将讨论几种可以用来解决不平衡类问题的技术。...一些技术适用于大多数分类问题,而另一些技术可能更适合于特定的不平衡级别。在本文中,我将以二进制分类的方式讨论这些问题,但在大多数情况下,相同的内容将用于多数类分类。...代价敏感学习 在常规学习中,我们平等地对待所有的错误分类,这导致了分类中的不平衡问题,因为在大多数类中识别少数类没有额外的奖励(extra reward)。...代价敏感学习改变了这种情况,并使用一个函数C(p, t)(通常表示为一个矩阵),其中指定将t类实例错误分类成p类实例。这让我们惩罚少数类的错误分类多于多数类的错误分类,希望以此增加真阳性率。...在异常检测中,我们假设有一个数据点的“正态”分布,任何与该分布完全偏离的东西都是异常的。当我们将分类问题重新定义为一个异常检测问题时,我们将多数类视为“正常”的点分布,少数则为异常。

    85160

    机器学习中的常见问题——几种梯度下降法

    一、梯度下降法 在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数ll,接下来便是通过优化算法对损失函数ll进行优化,以便寻找到最优的参数θ\theta 。...在求解机器学习参数θ\theta 的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。...,对于数据量特别大的情况,如大规模的机器学习应用,每次迭代求解所有样本需要花费大量的计算成本。...,即在随机梯度下降法中每次仅根据一个样本对模型中的参数进行调整,等价于上述的b=1情况下的mini-batch gradient descent,即每个mini-batch中只有一个训练样本。...,数据的获取变得实时,例如推荐中,系统希望能够根据用户的实时的信息对模型进行调整,这样就产生了在线学习,在线学习(Online Learning)算法就是充分利用实时数据的一个训练算法。

    84520

    机器学习中的过拟合问题以及解决方案

    笔者希望该笔记能够记录每个机器学习算法的过拟合问题。...———————————— 相关内容: 1、 R语言︱ROC曲线——分类器的性能表现评价 2、机器学习中的过拟合问题 3、R语言︱机器学习模型评估方案(以随机森林算法为例) ——————————————...所有的机器学习过程都是一个search假设空间的过程!我们是在模型参数空间搜索一组参数,使得我们的损失函数最小,也就是不断的接近我们的真实假设模型,而真实模型只有知道了所有的数据分布,才能得到。...往往我们的模型是在训练数据有限的情况下,找出使损失函数最小的最优模型,然后将该模型泛化于所有数据的其它部分。这是机器学习的本质! 那好,假设我们的总体数据如下图所示: ?...尽管图7中的简单的线性分类器比图5中的非线性分类器的效果差,但是图7的分类器的泛化能力强。这是因为分类器没有把样本数据的噪声和异常也进行学习。

    2.5K20

    机器学习中的集成学习

    在机器学习中,群体智慧是通过集成学习实现的,所谓集成学习(ensemble learning),是指通过构建多个弱学习器,然后结合为一个强学习器来完成分类任务并获得比单个弱分类器更好的效果。...1.2 集成学习的三大关键领域 在过去十年中,人工智能相关产业蓬勃发展,计算机视觉、自然语言处理、语音识别等领域不断推陈出新、硕果累累,但热闹是深度学习的,机器学习好似什么也没有。...2012年之后,传统机器学习占据的搜索、推荐、翻译、各类预测领域都被深度学习替代或入侵,在招聘岗位中,69%的岗位明确要求深度学习技能,传统机器学习算法在这一场轰轰烈烈的人工智能热潮当中似乎有些被冷落了...在人工智能大热的背后,集成学习就如同裂缝中的一道阳光,凭借其先进的思想、优异的性能杀出了一条血路,成为当代机器学习领域中最受学术界和产业界青睐的领域。...任何机器学习/深度学习工作者都必须掌握其原理、熟读其思想的领域 在集成学习的发展历程中,集成的思想以及方法启发了众多深度学习和机器学习方面的工作,在学术界和工业界都取得了巨大的成功。

    11810

    机器学习中的归一化和正则化问题

    今天我们要说的是,在机器学习常用的算法里面,那些需要归一化,那些不需要,通过scikit-learn中的预处理的一些方法,实际了解如何正则化和归一化数据。...看完本文,应该对于一般的机器学习任务,都可以轻松上手操作。 先看一下归一化是什么意思,对于一个机器学习任务来说,首先要有数据,数据怎么来?...,统计学里面把数据分为数值型数据、分类型数据、顺序型数据,对这些数据怎么处理成统一的口径的问题,就是机器学习中数据归一化问题。...机器学习中的模型这么多,怎么分的清那个需要归一化,那个不需要呢,这里有一个一般的准则,就是需要归一化的模型,说明该模型关心变量的值,而相对于概率模型来说,关心的是变量的分布和变量之间的条件概率。...一般一个机器学习的数据集都是M*N的一个大的矩阵,M代表样本数,N代表特征的个数,其中的均值和方差,指的是整个大的矩阵的均值和方差,x是任意一个样本,xij,即: 下同,不在说明。

    2.3K60

    机器学习中的常见问题——几种梯度下降法

    一、梯度下降法 在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数ll,接下来便是通过优化算法对损失函数ll进行优化,以便寻找到最优的参数θ\theta 。...在求解机器学习参数θ\theta 的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。...梯度下降法有很多优点,其中,在梯度下降法的求解过程中,只需求解损失函数的一阶导数,计算的代价比较小,这使得梯度下降法能在很多大规模数据集上得到应用。...image.png 4、online gradient descent 对于互联网上的应用来说,数据的获取变得实时,例如推荐中,系统希望能够根据用户的实时的信息对模型进行调整,这样就产生了在线学习,在线学习...每次根据实时的数据计算梯度,进而调整模型中的参数。

    1.8K50

    机器学习几个基本的问题

    关键词:机器学习、推荐系统、文本挖掘 正文如下: 从今年四月份到现在已经工作快9个月了,最开始是做推荐系统,然后做机器学习,现在是文本挖掘,每个部分研究的时间都不多,但还是遇到了很多问题,目前就把一定要总结的问题总结一下...4.如何评价推荐系统的好坏?指标是啥? 机器学习:   1.能解决哪几类问题?(分类聚类回归预测?)每一类型会有哪些算法?   2.每个算法优缺点各是什么?各能解决什么问题?侧重点是什么?...(背后的数学依据)各个算法之间的联系和区别是啥?各算法之间可以结合吗?瓶颈和局限是什么?   4.python的scikit-learn包是不是都熟悉了,源码有没有看过?...(清洗数据(缺失值、噪音数据、平滑处理)--->中文分词(各种方法)--->特征提取(tfidf还有其他几种方法) --->特征选择(卡方互信息发IG法等等)--->用机器学习算法跑)有没有漏的?...关于这些问题的解决,不定期的在博客里发出来,不断修改,不断添加,总之,学习是个不断迭代的过程,fighting!:) 点击“阅读原文”可获得学习攻略 | 机器学习路线图。 END.

    75070
    领券