首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分区的策略

    在之前的数据复制当中,我们有一个前提就是数据量不会很大,但是随着公司的发展,再加上埋点等各种数据收集的发展,数据量会爆发式的增长,那么单台服务器很难处理这么庞大的数据了。数据必须分布在各个服务器上,这就是数据分区(partition),在不同的数据系统有着不同的叫法,比如在MongoDB、Elasticsearch、SolrCloud被称为shard,HBase被称为region,Cassandra和Riak被称为vnode,名称虽多但是本质确实一样的。当数据分布在各个服务器时,对性能也会有很大的提高,因为对数据的读取压力会由多台服务器分担。在下面的讨论中,我们会先讨论如何数据分区的方法,再去看看数据热点的rebalancing,最后会讨论如何将请求发送到正确的partition上。

    03
    领券