首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习策略(2)

    假设正在调试猫分类器,然后取得了90%准确率,相当于10%的误差,这离希望的目标还很远。看了算法分类错误的例子,注意到算法将一些狗分类成猫。所以这里考虑是否做 一个项目专门处理狗,这个项目可能花几个月时间才能将分类狗的算法做好,在狗图片上犯更少的错误,与其做这个项目花几个月时间而且结果未知。 这里有个误差分析流程,可以让你知道这个方向是否值得努力。 1.收集一下比如100个错误标记的开发集例子,查看开发集里面有多少错误 标记的例子是狗。假设你的100个错误标记例子中只有5%是狗,这意味着100个例子,在典型的100个出错例子中,即使你完全解决了狗的问题,也只能修正这100个错误中的5个;现在假设发生了另外一件事,100个错误标记的开发集例子,实际有50张都是狗,现在花时间解决狗的问题可能效果就很好,这种情况下如果解决了狗的问题,那么你的误差就可能从10%下降到5%了。通过人工查看就可以知道你改进的方向有多少价值。

    02

    林元庆破解小度问鼎最强大脑三大原理,后吴恩达时代百度 AI 突围

    【新智元导读】《最强大脑》第四季最终回播出,百度人工智能机器人小度和人类一起问鼎“脑王”。小度在前两个环节(图像检索和人脸识别)表现优异,最后声纹识别项目挑战失败。成败背后的技术要点和难点是什么?本文为你带来最全解读。后附百度研究院院长林元庆对挑战赛技术原理、百度为何不做围棋AI、吴恩达走后百度人事架构的回答。 本季脑王共分三个环节,前两个环节人类选手和小度都参与了挑战(小度都成功了,两名人类选手都失败了),第三个环节则是小度和人类选手分别挑战不同的项目(结果小度失败,人类成功)。 最终结果:人类代表队和小

    06

    智能语音扩展数字化服务

    广义上来讲智能语音技术有各种各样的定义,以上是常见的一些热门的场景。语音识别,刚才罗老师也分享了部分内容。语音合成是文字变成语音,这部分我们后面会详细展开。再往后看,声纹识别,在智能车里面有很多的功能需要人的发音媒介来控制命令的时候声纹就很重要。开一个车门,车上有一个小孩,突然哭闹,下一个不合适的指令,你区别不出来这个人,对语音控制来说不合适的。或者有一些不当的操作,可以通过声纹来做,通过声音来做对人的识别和认证的过程。声纹识别其实在未来的应用场景比较热门,实际应用当中遇到大的挑战点是什么?很多其他的生物识别靠人脸或指纹这类比较稳定的特征,可是声纹不稳定,人高兴的时候,第一天晚上唱了卡拉OK,第二天声音哑了,怎么能够在变化比较明显的生物特征上做识别是一个很大的挑战。

    05
    领券