【导读】在本文中,作者对常用的三种机器学习优化算法(牛顿法、梯度下降法、最速下降法)进行了介绍和比较,并结合算法的数学原理和实际案例给出了优化算法选择的一些建议。
《机器学习与应用》由清华大学出版社出版,是机器学习和深度学习领域又一高质量的入门与提高教材。该书系统、深入地讲述了机器学习与深度学习的主要方法与理论,并紧密结合工程实践与应用。
我们要求其最小值,当然是对目标函数进行求导,但通常目标函数是非线性的,因此我们需要通过以下步骤对目标函数进行求解:
在机器学习中,有很多的问题并没有解析形式的解,或者有解析形式的解但是计算量很大(譬如,超定问题的最小二乘解),对于此类问题,通常我们会选择采用一种迭代的优化方式进行求解。
优化问题一般可分为两大类:无约束优化问题和约束优化问题,约束优化问题又可分为含等式约束优化问题和含不等式约束优化问题。
在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,在前面的某个文章中,我们给出了牛顿法和最速下降法的比较,牛顿法需要初值点在最优点附近,条件较为苛刻。
我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。随着学习的深入,博主越来越发现最优化方法的重要性,学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解,比如我们现在学习的机器学习算法,大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等。
https://www.cnblogs.com/maybe2030/p/4751804.html
在确定了可优化二次型的类型后,本文讨论二次型的优化方法。 当前问题 解方程\bf{Ax}=\bf{b} 其中\bf{A}为半正定矩阵 \bf{A}的秩与其增广矩阵\bf{Ab}的秩相等 优化方法 代数法 高斯消元法 数学上,高斯消元法(或译:高斯消去法),是线性代数规划中的一个算法,可用来为线性方程组求解。但其算法十分复杂,不常用于加减消元法,求出矩阵的秩,以及求出可逆方阵的逆矩阵。 在\bf{A}的行列式不为0时,可以逐项消除半边系数,得到三角阵,计算得到x_n再逐步带入计算出其他
梯度下降算法的公式非常简单,”沿着梯度的反方向(坡度最陡)“是我们日常经验得到的,其本质的原因到底是什么呢?为什么局部下降最快的方向就是梯度的负方向呢?也许很多朋友还不太清楚。没关系,接下来我将以通俗的语言来详细解释梯度下降算法公式的数学推导过程。
1. 前言 熟悉机器学习的童鞋都知道,优化方法是其中一个非常重要的话题,最常见的情形就是利用目标函数的导数通过多次迭代来求解无约束最优化问题。实现简单,coding 方便,是训练模型的必备利器之一。这篇文章主要总结一下使用导数的最优化方法的几个基本方法,梳理相关的数学知识,本人也是一边写一边学,如有问题,欢迎指正,共同学习,一起进步。 2. 几个数学概念 1) 梯度(一阶导数) 考虑一座在 (x1, x2) 点高度是 f(x1, x2) 的山。那么,某一点的梯度方向是在该点坡度最陡的方向,而梯度的大小告诉我
是关于Θ的一个函数,我们当前所处的位置为Θ0点,要从这个点走到J的最小值点\nabla 是梯度,\alpha是学习率或者步长
决策树算法 根据数据属性,采用树状结构建立决策模型。常用来解决分类和回归问题。 常见算法:CART(Classification And Regression Tree),ID3,C4.5,随机森林等 回归算法 对连续值预测,如逻辑回归LR等 分类算法 对离散值预测,事前已经知道分类,如k-近邻算法 聚类算法 对离散值预测,事前对分类未知,如k-means算法 神经网络 模拟生物神经网络,可以用来解决分类和回归问题 感知器神经网络(Perceptron Neural Network) ,反向传递(Back Propagation)和深度学习(DL) 集成算法 集成几种学习模型进行学习,将最终预测结果进行汇总 Boosting、Bagging、AdaBoost、随机森林 (Random Forest) 等
在上一节,我们简单的介绍了数值优化中线搜索方法的思想和步长条件。那么这一节,我们更多的开始关注这些步长条件的理论性质,学优化最忌知其然,不知其所以然,所以我们需要我们帮助我们理解为什么给定的步长条件可以导出的一些好的,有助于优化的收敛性。
本文介绍了梯度下降算法的起源、批量梯度下降、随机梯度下降和小批量梯度下降,以及它们在机器学习中的重要性。通过这些算法,可以优化模型权系数,从而提高模型的性能。
摘自《数值最优化方法》 \qquad 已知 设步长为 α \alpha α,下降方向为 d d d, f ( x k + α d ) f(x_{k}+\alpha d) f(xk+αd)在 x k x_{k} xk的 T a y l o r Taylor Taylor展示为 f ( x k + 1 ) = f ( x k + α d ) = f ( x k ) + α g k T d + O ( ∣ ∣ α d ∣ ∣ 2 ) f(x_{k+1})=f(x_{k}+\alpha d)=f(x_{k})+\alpha g_{k}^{T}d+O(||\alpha d||^{2}) f(xk+1)=f(xk+αd)=f(xk)+αgkTd+O(∣∣αd∣∣2)为使函数值下降,下降方向满足 g k T d < 0 g_{k}^{T}d<0 gkTd<0 \qquad 收敛性和收敛速度 收敛性 算法产生的点阵 { x k } \{x_{k}\} { xk}在某种范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ∣∣⋅∣∣意义下满足 l i m k → ∞ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \mathop{lim}\limits_{k\to\infty}||x_{k}-x^{*}||=0 k→∞lim∣∣xk−x∗∣∣=0称算法是收敛的,当从任意初始点出发时,都能收敛到 x ∗ x^{*} x∗称为具有全局收敛性,仅当初始点与 x ∗ x_{*} x∗充分接近时才能收敛到 x ∗ x^{*} x∗称算法具有局部收敛性。 \qquad 收敛速度(已知收敛):若 l i m k → ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = a \mathop{lim}\limits_{k\to\infty}\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||}=a k→∞lim∣∣xk−x∗∣∣∣∣xk+1−x∗∣∣=a \qquad 当 0 < a < 1 0<a<1 0<a<1时,迭代点列 { x k } \{x_{k}\} { xk}的收敛速度是线性的,这时算法称为线性收敛。当 a = 0 a=0 a=0时, { x k } \{x_{k}\} { xk}的收敛速度是超线性的,称为超线性收敛。 \qquad 二阶收敛:若 l i m k → ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ 2 = a \mathop{lim}\limits_{k\to\infty}\frac{||x_{k+1}-x^{*}||}{||x_{k}-x^{*}||^{2}}=a k→∞lim∣∣xk−x∗∣∣2∣∣xk+1−x∗∣∣=a \qquad a a a为任意常数,迭代点列 { x k } \{x_{k}\} { xk}的收敛速度是二阶的,这时算法称为二阶收敛。超线性收敛和二阶收敛的收敛速度较快,是理想的收敛速度。 \qquad 负梯度法和牛顿 ( N e w t o n ) (Newton) (Newton)型方法 N e w t o n Newton Newton型方法特殊情形的一种负梯度方法—最速下降法。首先下降方向满足 g k T d < 0 g_{k}^{T}d<0 gkTd<0,为使 ∣ g k d ∣ |g_{k}d| ∣gkd∣达到最大值,则由 C a u c h y − S c h w a r z Cauchy-Schwarz Cauchy−Schwarz不等式 ∣ g k T d ∣ ≤ ∣ ∣ g k ∣ ∣ ∣ ∣ d ∣ ∣ |g_{k}^{T}d|\leq||g_{k}||||d|| ∣gkTd∣≤∣∣gk∣∣∣∣d∣∣知当且仅当 d = d k = − g k / ∣ ∣ g k ∣ ∣ d=d_{k}=-g_{k}/||g_{k}|| d=dk=−gk/∣∣gk∣∣时,等式成立, g k T d g_{k}^{T}d gkTd达到最小。考虑在 d k d_{k} dk方向上的步长,取其负梯度方向即 d k = − g k d_{k}=-g_{k} dk=−gk。 \qquad 收敛性分析 1. 给定 G G G度量下的范数定义,给出 K a n t o r o v i c h Kantorovich Kantorovich不等式。定义 设 G ∈ R n × n G\in\mathbb{R}^{n\times n} G∈Rn×n对称正定, u , v ∈ R n u,v\in\mathbb{R}^{n} u,v∈Rn则 u u u与 v v
我们已经探讨了观测模型 X为旋转+平移,h为相机观测模型 ,但可以求解 eg.从最大似然到最小二乘 直观的解释 由于噪声的存在,当我们把估计的轨迹与地图代入SLAM的运动
常用机器学习算法汇总比较的最后一篇,介绍提升(Boosting)算法、GBDT、优化算法和卷积神经网络的基本原理、优缺点。
1 梯度 1.1 定义 梯度:是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数。 关于梯度的更多介绍请看:如何直观形象的理解方向导数与梯度以及它们之间的关系? 1.2 计算 一个
首先谈一下应用场景——在拟合的时候进行应用 什么是拟合?你有一堆数据点,我有一个函数,但是这个函数的很多参数是未知的,我只知道你的这些数据点都在我的函数上,因此我可以用你的数据点来求我的函数的未知参数。例如:matlab中的fit函数 最小二乘法天生就是用来求拟合的,看函数和数据点的逼近关系。它通过最小化误差的平方和寻找数据的最佳函数匹配进行求解。
优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。
设\bf{A}为n阶实对称正定矩阵,如果有两个n维列向量\bf{s}_1和\bf{s}_2满足
GBDT(Gradient Boosting Descision Tree),梯度提升决策树,又名 MART(Multiple Additive Regression Tree),是由多颗回归决策树组成的 Boosting 算法,常用于 CTR 预估。本文介绍了决策树、Boosting 决策树、Gradient Boosting 决策树的算法原理和实现。 Regression Descision Tree 最小二乘回归树生成算法 输入:训练数据集 DDD 输出:回归树 算法:在训练集所在的输入空间中,递归
梯度下降法及其Python实现 基本介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向。 梯度下降法特点:越接近目标值,步长越小,下降速度越慢。 下面将通过公式来说明梯度下降法。 建立模型为拟合函数h(θ) : 接下来的目标是将该函数通过样本的拟合出来,得到最佳的函数模型。因此构建损失函数J(θ)(目的是通过求解minJ(θ)
BP(Back Propagation)神经网络是1986年由以Rumelhart和McCelland为首的科学家小组提出的,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存储大量的输入/输出因施工和关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
一、优化算法概述 优化算法所要求解的是一个问题的最优解或者近似最优解。现实生活中有很多的最优化问题,如最短路径问题,如组合优化问题等等,同样,也存在很多求解这些优化问题的方法和思路,如梯度下降方法。 机器学习在近年来得到了迅速的发展,越来越多的机器学习算法被提出,同样越来越多的问题利用机器学习算法得到解决。优化算法是机器学习算法中使用到的一种求解方法。在机器学习,我们需要寻找输入特征与标签之间的映射关系,在寻找这样的映射关系时,有一条重要的原则就是使得寻找到的映射结果与原始标签之间的误差最小
集成方法有很多种,一种叫做bagging,bagging的思想是,我把我的数据做一点微小的调整,就得到了一个跟原来不一样的数据集,我就能多训练一个模型出来,模型的数量多了,解释力自然就增强了。比如说我原来有100个人的数据,其中有两个分别叫Tony和Lily,我把Tony这条数据删掉,用Lily的数据来替换,这样就得到了一个跟原来不一样的全新的数据集,这个过程叫做Bootstrap。
梯度下降法(Gradient Descent)也称为最速下降法(Steepest Descent),是法国数学家奥古斯丁·路易·柯西 (Augustin Louis Cauchy) 于1847年提出来,它是最优化方法中最经典和最简单的一阶方法之一。梯度下降法由于其较低的复杂度和简单的操作而在很多领域得到广泛研究和应用,如机器学习。由梯度下降法衍生了许多其他算法,如次梯度下降法,近端梯度下降法,随机梯度下降法,回溯梯度发,动量加速梯度法等等。本文只介绍最基础的梯度下降法原理和理论分析,与此同时,通过仿真来说明梯度下降法的优势和缺陷。其他重要的梯度下降衍生方法会持续更新,敬请关注。
选自 Neuraldesigner 作者:Alberto Quesada 机器之心编译 参与:蒋思源 在神经网络中,系统的学习过程一般是由训练算法所主导。而现如今有许多不同的学习算法,它们每一个都有不同的特征和表现。因此本文力图描述清楚五大学习算法的基本概念及优缺点,给读者们阐明最优化在神经网络中的应用。 问题形式化 神经网络中的学习过程可以形式化为最小化损失函数问题,该损失函数一般是由训练误差和正则项组成。误差项会衡量神经网络拟合数据集的好坏,也就是拟合数据所产生的误差。正则项主要就是通过给特征权重增加罚
相同 1.本质相同:两种方法都是在给定已知数据(independent & dependent variables)的前提下对dependent variables算出出一个一般性的估值函数。然后对给定新数据的dependent variables进行估算。 2.目标相同:都是在已知数据的框架内,使得估算值与实际值的总平方差尽量更小(事实上未必一定要使用平方),估算值与实际值的总平方差的公式为:
梯度下降法是一个一阶最优化算法,通常也称为最速下降法。要使用梯度下降法找到一个函数的局部极小值,必须响函数上当前对于梯度(或者近似梯度)的反方向的规定步长居里点进行迭代搜索。所以梯度下降法可以帮助我们求解某个函数的极小值或者最小值。对于n为问题就是最优解,梯度下降法是最常用的方法之一。
这里的终止条件一般为∇f(\(x^k\))=0,但是在实际计算的时候,我们不会直接判断为0,而是二范数小于一个非常小的数,如\(10^{-4}\)或者\(10^{-6}\)
01 大数据的定义 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据是一个笼统的概念暂未发现和准确的定义。 大数据的核心是利用数据的价值,机器学习是利用数据价值的关键技术,对于大数据而言,机器学习是不可或缺的。相反,对于机器学习而言,越多的数据会越 可能提升模型的精确性,同时,复杂的机器学习算法的计算时间也迫切需要分布式计算与内存计算这样的关键技术。因此,
作者:YCM1101743158 来源: http://blog.csdn.net/ycm1101743158/article/details/70158767 大数据的定义 大数据(b
这是一个全新的系列,也是厦门大学数学科学学院第一年开设的课程。希望这一个全新的系列能够让大家(当然也包括我自己……)从一个系统的角度来看优化这一个主题。同样,这也是专栏内目前的第一个真正与我的主修专业——计算数学相关的系列笔记。
机器学习的优化(目标),简单来说是:搜索模型的一组参数 w,它能显著地降低代价函数 J(w),该代价函数通常包括整个训练集上的性能评估(经验风险)和额外的正则化(结构风险)。与传统优化不同,它不是简单地根据数据的求解最优解,在大多数机器学习问题中,我们关注的是测试集(未知数据)上性能度量P的优化。
最近在做基于激光信息的机器人行人跟踪发现如果单独利用激光信息很难完成机器人对行人的识别、跟踪等功能,因此考虑与视觉融合的方法,这样便可以充分利用激光雷达提供的精确位置信息及视觉提供的丰富纹理、颜色等场景信息。以下是最近调研视觉SLAM中的实现方法的总结,包括三方面内容:姿态计算、闭环检测、BA优化。
本文实例讲述了PHP实现的贪婪算法。分享给大家供大家参考,具体如下: 背景介绍:贪婪算法与数据结构知识库算法可以说是离我们生活最近的一种算法,人总是贪婪的嘛,所以这种算法的设计是很符合人性的。之所以这么说,是因为人们会在生活中有意无意的使用贪婪算法来解决问题。最常见的就是找零钱了,每个人都没学过该怎么找零钱,但在所有面额的钱都充足时,每个人都会找出同样组合来凑够需要的钱。其实这里面就是贪婪算法在起作用。 设计思路:贪婪法的设计思路可以从两方面来理解,即直观上和数学上。从直观上理解贪婪算法就是用最快的方法来解决问题。在这里面“快”是主要目标,例如上面找零钱的例子,假如你要找的零钱为6.6元。那首先要拿一张5元的,因为这可以使你凑的钱增长最快。如果人民币有6元的面额那你肯定会选6元的而不是拿两张别的来凑6元;从数学上来理解贪婪算法就是在做判断时以当前最优解为目标,类似于最优化中的最速下降法。这种方法的好处是解题速度极快,基本上是一次历遍就可以完成。 算法缺陷:正如做人不能太贪婪一样,贪婪算法本身有着致命的缺陷,这使得其应用背景收到了很多限制。因为算法是取的局部最优解,没有考虑以后的问题。这就像一个自私自利的人一样,虽然短时间内可以获得一些利益,但长期以往,很难会有大的成就。当然,社会很复杂,也许会有人一直自私下去而生活的还不错。这体现在算法上就是在一些情况下(具体下面会提到),贪婪算法是可以得到最优解的,这对于算法设计来说当然是好事。
该文总结了通过梯度下降算法对函数进行优化的方法,包括初始化、梯度下降、优化目标、损失函数、正则化等步骤。同时介绍了如何通过损失函数、梯度、优化算法、模型参数、训练数据、过拟合、正则化、最优解等概念进行模型训练和优化。
本文介绍了机器学习的两种基本类型:回归(Regression)和分类(Classification)。回归问题是根据一组连续的输入变量预测一个连续的输出变量,例如预测房价、销售额等。分类问题是根据一组离散的输入变量预测一个离散的输出变量,例如预测一个电子邮件是否为垃圾邮件。作者通过对比机器学习的回归和分类问题,以及它们在训练、预测和评估方面的不同点,全面介绍了机器学习中的回归和分类问题,并提供了相关的Python代码示例。
人工神经网络(ANN)从以下四个方面去模拟人的智能行为: 物理结构:人工神经元将模拟生物神经元的功能 计算模拟:人脑的神经元有局部计算和存储的功能,通过连接构成一个系统。人工神经网络中也有大量有局部处理能力的神经元,也能够将信息进行大规模并行处理 存储与操作:人脑和人工神经网络都是通过神经元的连接强度来实现记忆存储功能,同时为概括、类比、推广提供有力的支持 训练:同人脑一样,人工神经网络将根据自己的结构特性,使用不同的训练、学习过程,自动从实践中获得相关知识 神经网络是一种运算模型,由大量的
本文主要是从通俗直观的角度对机器学习中的无约束优化算法进行对比归纳,详细的公式和算法过程可以看最后附的几个链接,都是干货。 机器学习基本概念 统计机器学习整个流程就是:基于给定的训练数据集,由实际需求,需要解决的问题来选择合适的模型;再根据确定学习策略,是最小化经验风险,还是结构风险,即确定优化目标函数;最后便是采用什么样的学习算法,或者说优化算法来求解最优的模型。参照《统计机器学习方法》所讲,统计机器学习(特指有监督学习)的三要素为: 1)模型 模型是指基于训练数据集,所要学习到的概率分布
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式。 人工神经网络从以下四个方面去模拟人的智能行为: 物理结构:人工神经元将模拟生物神经元的功能 计算模拟:人脑的神经元有局部计算和存储的功能,通过连接构成一个系统。人工神经网络中也有大
——————————————————————————————————————————————————
上一节笔记传送门:https://zhuanlan.zhihu.com/p/121001066
假设我们已经知道梯度法——最速下降法的原理。 现给出一个算例: 如果人工直接求解: 现给出Python求解过程: import numpy as np from sympy import * impo
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 昨天编写了单个决策树用于回归的实现源码,它的构建实际上就是在不断寻找最优的划分属性和其取值的过程,分割后的节点若特征的取值都一样,或者包含的节点个数小于某个阈值,都将被标记为叶子节点,不再继续分裂,并且这个节点的取值为某个目标值,而不是像非叶子节点那样为某个最优特征及其分割值。 这是一个决策树用于回归的算法,以此为基础模型,如果
领取专属 10元无门槛券
手把手带您无忧上云