摘要:运用 kNN 解决鸢尾花和手写数字识别分类问题,熟悉 Sklearn 的一般套路。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Gavin__Zhou/article/details/49383891
最近在学习数据挖掘,对数据挖掘中的算法比较感兴趣,打算整理分享一下学习情况,顺便利用R来实现一下数据挖掘算法。 数据挖掘里我打算整理的内容有:分类,聚类分析,关联分析,异常检测四大部分。其中分类算法主要介绍:K-近邻算法,决策树算法,朴素贝叶斯算法,支持向量机,神经网络,logistic回归。 写这份学习笔记主要以学校data mining课程的课件为主,会参考一堆的baidu,一堆的google,一堆的blog,一堆的book以及一堆乱七八糟的资料,由于精力有限,恕不能一一列出
前言 最近在学习数据挖掘,对数据挖掘中的算法比较感兴趣,打算整理分享一下学习情况,顺便利用R来实现一下数据挖掘算法。 数据挖掘里我打算整理的内容有:分类,聚类分析,关联分析,异常检测四大部分。其中分类算法主要介绍:K-近邻算法,决策树算法,朴素贝叶斯算法,支持向量机,神经网络,logistic回归。 写这份学习笔记主要以学校data mining课程的课件为主,会参考一堆的baidu,一堆的google,一堆的blog,一堆的book以及一堆乱七八糟的资料,由于精力有限,恕不
文章主要介绍了如何利用KNN算法对手写数字进行分类,通过获取数据集,提取特征,训练模型,测试算法,并给出了具体的代码实现。同时,还介绍了一个基于KNN算法的简单邮件分类系统,用于区分垃圾邮件和正常邮件。
接下来我会从每个算法模型的介绍、基本原理、优缺点以及适用场景注意叙述,最后会基于开源数据集给出一个比较入门型的案例供大家学习~
k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。
来源:人工智能大讲堂本文约2600字,建议阅读9分钟本文带你了解了缺失值、缺失值的原因、模式以及如何使用 KNNImputer 来估算缺失值。 KNN和随机森林一样,给人的第一印象就是用于分类和回归,既然大家已经看到随机森林能够进行数据降维,那么也就没必要惊讶于今天的话题:knn缺失值填补。 概述 学习使用 KNNimputer 来估算数据中的缺失值; 了解缺失值及其类型。 介绍 scikit-learn 的 KNNImputer 是一种广泛使用的估算缺失值的方法。它被广泛视为传统插补技术的替代品。 在当今
图片分类问题就是辨认输入的图片类别的问题,且图片的类别属于事先给定的一个类别组中。尽管这看起来很简单,但这是计算机视觉的一个核心问题,且有很广泛的实际应用。并且,有很多的计算机视觉的问题最终会化简为图片分类问题。
作者:崔家华 东北大学|模式识别与智能系统研究生 量子位 已获授权编辑发布 在模式识别领域中,K-近邻算法(KNN算法)是一种用于分类和回归的非参数统计方法。 在这篇文章中,作者先详细介绍了K-近邻算法的基础知识,接着在Python 3中演示了约会网站配对实战和sklearn手写数字识别。形象生动,简明易懂。 在文章正式开始前,可能你需要这些信息—— Github代码获取: https://github.com/Jack-Cherish/Machine-Learning/ Python版本: Python3
第一期内容中我们了解到,PCL官网上将PCL分为十四个功能模块(滤波器、特征、关键点、配准、Kd树、八叉树、分割、采样一致性、表面、范围图像、输入输出、可视化、常用、搜索),本期我们将粗略介绍部分模块的功能,帮助开发者定位可供自己应用的功能。
本文介绍了自然语言处理中的文本相似度计算方法和应用场景,并详细阐述了基于LSH(Locality-Sensitive Hashing)方法、基于树的方法(如随机森林、梯度提升树等)和基于图的方法(如k-Nearest Neighbors,k-NN)等应用场景。同时,文章还对未来的研究方向进行了展望,包括模型性能的评价、适用领域的拓展、计算效率的提升等。
图像识别(Image Recognition)是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。
对于一些二分类问题或者多分类问题,部分类别数据相较于其它类别数据而言是要小得多的,这种现象就是数据不平衡问题。数据不平衡问题会导致什么情况呢?假如是基于一些特征判断病人是否患有该疾病,且该疾病是一个小概率获得的疾病,假设概率为0.0001, 那么表明有10000个来看病的人中只有一个人患有该疾病,其余9999个人都是正常病人。如果用这样的一批数据进行训练模型算法,即使该模型什么都不学,都判定为正常人,其准确率高达0.9999, 完全满足上线要求。但我们知道,这个模型是不科学的,是无用的模型。这种数据分布严重不平衡的情况下,模型将具有严重的倾向性,倾向于数据样本的多的类别,因为模型每次猜样本多对应的类别的对的次数多。因此,如果直接将严重数据不平衡的数据拿来直接训练算法模型,将会遇到上述问题。一般在10倍以上可以判定为数据不平衡问题。
参考:https://www.cnblogs.com/cmyxn/p/6993422.html
在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数。
使用train_test_split函数将数据集分为训练集和测试集,测试集比例为0.2
初入机器学习,无论是在书本上,还是在学习平台上,第一个介绍的就是监督学习,那么什么是监督学习呢?监督——顾名思义,把你“看着学习”,说的直白一点就是让你的计算机明白一种规律,并且按照这种规律进行大量的学习,最后通过该规律进行预测或者分类。
K近邻(K-Nearest Neighbors, KNN)算法既可处理分类问题,也可处理回归问题,其中分类和回归的主要区别在于最后做预测时的决策方式不同。KNN做分类预测时一般采用多数表决法,即训练集里和预测样本特征最近的K个样本,预测结果为里面有最多类别数的类别。KNN做回归预测时一般采用平均法,预测结果为最近的K个样本数据的平均值。其中KNN分类方法的思想对回归方法同样适用,因此本文主要讲解KNN分类问题,下面我们通过一个简单例子来了解下KNN算法流程。 如下图所示,我们想要知道绿色点要被决定赋予哪个类,是红色三角形还是蓝色正方形?我们利用KNN思想,如果假设K=3,选取三个距离最近的类别点,由于红色三角形所占比例为2/3,因此绿色点被赋予红色三角形类别。如果假设K=5,由于蓝色正方形所占比例为3/5,因此绿色点被赋予蓝色正方形类别。
机器学习算法是从数据中产生模型,也就是进行学习的算法。我们把经验提供给算法,它就能够根据经验数据产生模型。在面对新的情况时,模型就会为我们提供判断(预测)结果。例如,我们根据“个子高、腿长、体重轻”判断一个孩子是个运动员的好苗子。把这些数据量化后交给计算机,它就会据此产生模型,在面对新情况时(判断另一个孩子能不能成为运动员),模型就会给出相应的判断。
使用数据范围:数值型和标称型。 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。
最大最小距离和层次聚类算法的一个共同特点是某个模式一旦划分到某一类之后,在后续的算法过程中就不再改变了,而简单聚类算法中类心一旦选定后,在后继算法过程中也不再改变了。因此,这些方法效果一般不会太理想。
分类(classification)问题是数据挖掘领域中非常重要的一类问题,目前有琳琅满目的方法来完成分类。然而在真实的应用环境中,分类器(classifier)扮演的角色通常是识别数据中的“少数派”,比如:
教程地址:http://www.showmeai.tech/tutorials/34
导语 JavaScript 适合做机器学习吗?这是一个问号。但每一位开发者都应该了解机器学习解决问题的思维和方法,并思考:它将会给我们的工作带来什么?同样,算法能力可能会是下一阶段工程师的标配。 本文旨在通过讲解识别手写字的处理过程,带读者了解机器学习解决问题的一般过程。本文适合以下背景的读者阅读: 你不需要具备 Python、C++ 的编程能力:全文使用 JavaScript 作为编程语言,且不依赖任何第三方库实现机器学习算法。 你不需要具备算法能力和高数的背景,本文机器学习算法的实现不过 20 行代
本文作者为悉尼科技大学博士生武宇(Yu Wu),他根据 CVPR 2018 录用论文 Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning 为 AI 科技评论撰写了独家解读稿件。
k-近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。 一、基于实例的学习。 1、已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。 从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。 2、基于实例的方法可以为不同的待分类查询实例建立不同的目标函数逼近。事实上,很多技术只建立目标函数的局部逼近,将其应用于与
从今天开始,与大家分享我学习《Machine Learning In Action》这本书的笔记与心得。我会将源码加以详细的注释,这是我自己学习的一个过程,也是想通过这种方式帮助需要学习的童鞋的一种方式。
原标题 | Accelerating TSNE with GPUs: From hours to seconds
k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。
本门课程是李飞飞在斯坦福大学讲授的计算视觉,他们团队主要通过机器学习和深度学习的方法来传授机器视觉的相关内容,本文作者吉林大学赵一帆进行了笔记方面的整理。笔者能力有限,如有出错,请及时告知。
什么是K近邻? K近邻一种非参数学习的算法,可以用在分类问题上,也可以用在回归问题上。 什么是非参数学习? 一般而言,机器学习算法都有相应的参数要学习,比如线性回归模型中的权重参数和偏置参数,SVM
OCR也叫做光学字符识别,是计算机视觉研究领域的分支之一。它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。
《机器学习实战》一书介绍的第一个算法是k-近邻算法。简单的说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测。
认识人工智能,还需要理清几个概念之间的关系:人工智能是一个大的概念,是让机器像人一样思考甚至超越人类;而机器学习是实现人工智能的一种方法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测;深度学习是机器学习的一种实现方式,通过模拟人神经网络的方式来训练网络;而统计学是机器学习和神经网络的一种基础知识。
对于分类问题,最主要的任务就是找到对应数据合适的分类。而机器学习的另一项任务就是回归,比如CTR预测之类的。ml算法按照有无label可以分为有监督学习和无监督学习,对于无监督学习的算法比较经典的有聚类算法,有监督的相对来说较多,回归类算法基本都是的。按照参数有可以划分成有参数模型和无参数模型和半参数模型,有参数模型有两个特征,一个是用参数代表从训练数据中获得的信息,只有当target function包含在了hypothesis set里面才会收敛。无参数模型是没有参数的,直接存储所以的训练数据,也就是不再用参数代表训练数据,比如KNN,无训练过程,而且一定收敛。对于半参数模型,参数一定有,但是一定收敛,最经典的就是神经网络模型,神经网络模型在理论上是可以拟合所有的target function,所有只要训练数据够多,一定可以收敛,因为他的hypothesis set包含了所以的target function。 如何选择算法,需要考虑两个方面:首先是使用这个算法的目的是什么,想要完成什么任务,其次就是数据怎么来,规模多大。开放ml程序一般要经历一下步骤,首先是收集数据,准备输入数据,也就是数据预处理,分析输入数据,训练算法。
在《基于FPGA数字识别一》我们在三种数字识别方法中选择了数字特征识别算法,完成了屏幕固定位置的数字识别。例如图1所示,数字只有在标线的固定位置才能被识别,移出标线就不能被识别。
异常检测的目标是发现与大部分其他对象不同的对象。通常,异常对象被称为离群点,因为在数据的散布图中,他们远离其他数据点。异常检测也称为偏差检测、例外挖掘。
(6)使用算法:首先需要输入样本数据和结构化输出结果,然后运行k-近邻算法判断输入数据分别属于那个分类,最后应用对计算出的分类执行后续的处理。
最近事情无比之多,换了工作、组队参加了一个比赛、和朋友搞了一些小项目,公号荒废许久。坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列。想要继续做这个是因为,一方面在具体应用中,发现很多之前遗漏的点,可以在这里查漏补缺,巩固知识点。另一方面,也是想大家一起打卡学习,一起探讨。
如果您可以回顾几年前的AI并将其与现在的AI进行比较,您会惊讶地发现AI的发展速度随着时间的增长呈指数级增长。
总体来说这本书是不错的,对于算法的原理概述的比较准确,就是实战的代码过于简略,入门机器学习的话还是值得一看的
K近邻法(knn)是一种基本的分类与回归方法。k-means是一种简单而有效的聚类方法。虽然两者用途不同、解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异同。
本程序主要参照论文,《基于OpenCV的脱机手写字符识别技术》实现了,对于手写阿拉伯数字的识别工作。识别工作分为三大步骤:预处理,特征提取,分类识别。预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作。
对于FPGA识别数字的基本算法知识请查看《基于FPGA的数字识别的实现》一文,对于数字位置的实时跟踪的基本算法知识请查看《基于FPGA的实时移动目标的追踪》一文。本节将基于FPGA的目标跟踪以及统计学的特征统计来实现对数字的位置实时定位以及数字识别,不在局限于数字在屏幕中的位置,也不局限数字的大小。
数字化已经改变了我们处理和分析信息的方式。信息的在线可用性呈指数增长。从网页到电子邮件、科学期刊、电子书、学习内容、新闻和社交媒体都充满了文本数据。其理念是快速创建、分析和报告信息。这是自动文本分类的
过去几年中,机器学习(ML)已经悄然成为我们日常生活的重要组成部分。无论是在线购物和流媒体网站的个性化推荐,还是保护我们的邮箱免受每日大量垃圾邮件的侵袭,机器学习都发挥了重要作用。然而,机器学习不仅仅是我们便利的工具。在当前的科技领域,机器学习已经变得至关重要,而且这种趋势似乎在未来也不会改变。机器学习被用于挖掘数据中隐藏的洞察,自动化任务和流程,增强决策能力,并推动创新的边界。
博客首发:https://bornforthis.cn/column/Machine-learning/informal-essay/01.html
领取专属 10元无门槛券
手把手带您无忧上云