首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    最短路径-Floyd算法

    --more--> > Floyd算法(Floyd-Warshall algorithm)又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径算法,与Dijkstra算法类似。...,这次我们来学习所有顶点间(任意两点间)的最短路径求解方法-Floyd算法。...对于求解任意两点最短路径的方式,我们也可以采用简单暴力将Dijkstra算法循环n遍(假设存在有n个顶点),也是可以求解任意两点间距离的,但是人类社会之所以会进步,难道仅仅是会使用筷子?...还是好好学习更先进的算法-Floyd算法吧! **注:**采用此暴力的时间复杂度为:O(n^3)。...; 4.Floyd-Warshall算法时间复杂度为O(n^3),空间复杂度为O(n^2)。

    2.9K10

    最短路径-Dijkstra算法

    Dijkstra算法,又称"迪杰斯特拉算法",是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。...算法解析 1: 设置2个顶点集合S,T  S 存储已经找到的最短路径点的距离  T 存储未处理过的顶点 2: 先把起点A存储到T.准备处理 3: 获取到T的起点A,首先起点A到起点A的距离是0,直接存储到...S:A=>{length:0,route:A}, 4: 然后通过起点,获取起点周围的几个点和距离,例如B距离1,C距离5,D距离3,存储到T 5: 起点到周围的点都是当前的最短路径,直接存储到S:B=>...length为5,而A=>B length为1,B=>C length为 1,1+1{length:2,route:ABC} (假想情况,为了方便理解更新最短路径...: 继续获取到E,C周围的点.存储到T 9: 如果已经获取到了终点(可以不需要终点,则之前遍历全部点),则不再获取终点周围的点 重复7,8步骤,直到T不存在数据 在这个过程中,可以保证起点到所有点都是最短路径

    2.8K40

    最短路径-Dijkstra算法

    迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。...-来自百度百科 一.最短路径问题的求解 1、单源最短路径用Dijkstra算法; 2、所有顶点间的最短路径用Floyd算法。...二.Dijkstra算法 开始之前我们需要知道的一些知识点: 1.Dijkstra算法只能用于边权为正的图中,时间复杂度为O(n^2); 2.BFS可能会是Dijkstra算法的实质,BFS使用的是队列进行操作...Dijikstra算法所求解的问题是:大概有这样一个有权图,Dijkstra算法可以计算任意节点到其他节点的最短路径。 ?...案例图 1.算法思路 1.指定一个节点,例如我们要计算 'A' 到其他节点的最短路径; 2.引入两个集合(S、U),S集合包含已求出的最短路径的点(以及相应的最短长度),U集合包含未求出最短路径的点(以及

    7K31

    最短路径:Dijkstra算法(求单源最短路径)Floyd算法(求各顶点之间最短路径

    最短路径: 在一个带权图中,顶点V0到图中任意一个顶点Vi的一条路径所经过边上的权值之和,定义为该路径的带权路径长度,把带权路径最短的那条路径称为最短路径。...DiskStra算法: 求单源最短路径,即求一个顶点到任意顶点的最短路径,其时间复杂度为O(V*V) 如图所示:求顶点0到各顶点之间的最短路径 代码实现: #include #include...: 求各顶点之间的最短路径,其时间复杂度为O(V*V*V) 如图所示,求之间的最短路径: 代码实现: #include #include #define...//递归输出两个顶点直接最短路径 void printPath(int u,int v,int path[][MaxVexNum]){ if(path[u][v]==-1){ printf(...;i<n;i++){ for(int j=0;j<n;j++){ A[i][j]=g.arcs[i][j]; path[i][j]=-1; } } //第二步:三重循环,寻找最短路径

    2.2K20

    最短路径算法java

    还是举昨天的Dijkstra算法来讲吧。...这里对不起了,用的别人的图 首先我们以1位初始点开始找,这时候我们发现1的附近只存在1---->2和1----->3这两条路径那么我们只需要选出这两者当中最短的一条保存那就是1---->2这条路径,这时候我们并没有保存其他的路径..., 所以就以2为起点开始发散,这时候我们发现2附近存在两条路径分别为2---->4和2---->3这时候我们存储其中最短的一条,即为2---->4这条路径,这时候存储4这个点。...这次循环我们就以4为点开始发散,这时候重点来了,4附近存在3条路,分别为4---->3和4---->5和4------>6,这时候我们发现,最短路径即为4---->3这条路径,**这里就是重点 **之前我们就已经发现了...顺便附上之前看了同学之后改进过的算法,但主要运用的是spfa算法

    2.2K10

    最短路径(Floyd算法,弗洛伊德算法,多源最短路径

    算法思想:一开始各顶点之间的最短路径,就是邻接矩阵值,每一次加入一个顶点,然后判断该顶点加入后,其余起点通过该顶点到达其余顶点能否得到比之前更短的最短路径,如果找到了就进行最短路径和权值和的更新 ?...算法伪代码 ?...= 0; i < arcNum/2; i++) { cin >> vi >> vj >> k; arc[vi][vj] = k; arc[vj][vi] = k; } } //佛洛伊德算法...:最短路径P数组 最短路径长度d数组 void Shorttestpath_Floyd(Graph G, int(*p)[Max], int(*d)[Max]) { //初始化最短路径数组p和最短路径长度数组...< endl; cout << "最短路径:"; int k = p[i][j];//获得第一个路径顶点的下标 //打印当前最短路径的起点 cout << i; //如果打印的不是终点

    2.1K20

    算法|Dijkstra最短路径算法

    01 — 单源最短路径 首先解释什么是单源最短路径,所谓单源最短路径就是指定一个出发顶点,计算从该源点出发到其他所有顶点的最短路径。...如下图所示,如果源点设为A,那么单源最短路径问题,就是求解从A到B,从A到C,从A到D,从A到E,从A到F的最短路径。 ?...比如,从A到D的最短路径,通过肉眼观察可以得出为如下,A->C->D,距离等于3+3=6,其中A->C边上的数值3称为权重,又知这是无向图,从C到A的权重也为3。 ?...02 — Dijkstra算法求单源最短路径 这个算法首先设置了两个集合,S集合和V集合。S集合初始只有源顶点即顶点A,V集合初始为除了源顶点以外的其他所有顶点,如下图所示: ?...注意,根据这种讨论,实际上我们考虑了两种从A到B的路径:A->B,A->C->B,但是到达B的路径不只这两条,因为经过D也可以到B,如果这些路劲中出现比距离5还小的路径的话,那么Dijkstra算法是不是有漏洞呢

    6.3K50

    深入解析最短路径算法

    本文将介绍三种最短路径算法,分别是:戴克斯特拉算法(Dijkstra algorithm),弗洛伊德算法(Floyd algorithm)以及A*搜索算法。...第二节 戴克斯特拉算法(Dijkstra algorithm) 该算法解决的是有向图中单个源点到其他顶点的最短路径问题。...第三节 弗洛伊德算法(Floyd algorithm) 该算法解决的是有向带权图中两顶点之间最短路径的问题。...该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。 A*算法最核心的部分,就在于它的一个估值函数的设计上:f(n)=g(n)+h(n)。...这个估值函数遵循以下特性: •如果h(n)为0,只需求出g(n),即求出起点到任意顶点n的最短路径,则转化为单源最短路径问题,即Dijkstra算法; •如果h(

    61910

    单源最短路径算法

    当然这只是最基础的应用,关于单源最短路径还有很多变体: 1.单源最短路径 2.单目的地最短路径 3.单节点对最短路径 4.所有节点对最短路径 最短路径定义: 路径p=的权是指组成...常用的单源最短路径的解法有两种:Dijkstra算法和bellman_ford算法。 松弛操作 松弛:先测试v到s之间的最短路径是否可以改善,可以则改善。...这是因为单源最短路径和所有节点对的最短路径都是基于松弛操作来实现的,只不过不同的算法采用了不同的松弛次数和顺序。...该算法时间复杂度很好分析,对每一条边都进行V次的松弛,因此该算法时间复杂度为O(VE),对于稀疏图而言的话效率还算不错,但是对于稠密图(E≈V^2),效率不是很高,因为稠密图的时候...使用便利的方式来找到最小值的效率偏低,整个算法时间复杂度为O(V^2),如果使用小根堆算法效率可以达到O(VlgV),但是高效率跟随者实现难度,因此oIer们一定要在时间,实现难度,效率,得分之间进行平衡

    1.8K40

    图的最短路径算法

    图的最短路径算法 最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题。...该算法常用于路由算法或者作为其他图算法的一个子模块。 指定一个起始点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。 ?...: M:边的数量 N:节点数量 通过上面的代码我们可以看出,我们实现的Dijkstra最短算法时间复杂度是O(N^2)。...其中每次找到离1号顶点最近的顶点的时间复杂度是O(N)。 优化: 这里我们可以用“堆”(以后再说)来优化,使得这一部分的时间复杂度降低到O(logN)。...用邻接表代替邻接矩阵存储 参考:http://blog.51cto.com/ahalei/1391988 总结如下: 可以发现使用邻接表来存储图的时间空间复杂度是O(M),遍历每一条边的时间复杂度是也是

    2.7K20

    最短路径问题:Dijkstra算法

    定义 所谓最短路径问题是指:如果从图中某一顶点(源点)到达另一顶点(终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边的权值总和(称为路径长度)达到最小。...下面我们介绍两种比较常用的求最短路径算法: Dijkstra(迪杰斯特拉)算法 他的算法思想是按路径长度递增的次序一步一步并入来求取,是贪心算法的一个应用,用来解决单源点到其余顶点的最短路径问题。...算法思想 首先,我们引入一个辅助向量D,它的每个分量D[i]表示当前找到的从起始节点v到终点节点vi的最短路径的长度。...那么,下一条长度次短的最短路径是哪一条呢?假设次短路径的终点是vk,则可想而知,这条路径或者是(v, vk)或者是(v, vj, vk)。...算法描述 假设现要求取如下示例图所示的顶点V0与其余各顶点的最短路径: ?

    5.5K40

    Floyd算法求解最短路径

    Floyd算法求解最短路径 1、算法概述 2、算法实例 3、算法实战 3.1 算法描述 3.2 解题思路 3.3 代码实现 1、算法概述   Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径算法...上述概念来源于百度百科 2、算法实例   如下图所示,我们看怎么来求解两点之间的最短路径。   ...总结:Floyd算法可以算出任意两点的最短路径,可以处理带有负权边的图,但不能处理带有“负环”的图。...时间复杂度:O(n^3) 3、算法实战 3.1 算法描述   小明喜欢观景,图示今天来到了蓝桥公园。   已知公园有N个景点,景点和景点之间一共有M条道路,小明有Q个观景计划。...输入输出样例 输入 3 3 3 1 2 1 1 3 5 2 3 2 1 2 1 3 2 3 输出 1 3 2 3.2 解题思路   使用Floyd算法求解,由于该算法时间复杂度为O(n^3),n较大会超时

    3.7K10

    acm-最短路径算法

    .html All-Pairs 的最短路径问题:所有点对之间的最短路径 Dijkstra算法是求单源最短路径的,那如果求图中所有点对的最短路径的话则有以下两种解法: 解法一: 以图中的每个顶点作为源点,...调用Dijkstra算法时间复杂度为O(n3); 解法二: Floyd(弗洛伊德算法)更简洁,算法复杂度仍为O(n3)。...一种最短路径算法,用于计算一个节点到其它所有节点的最短路径,动态路由协议OSPF中就用到了Dijkstra算法来为路由计算最短路径。...这样做虽然可以算出一个树形,但是在大多数情况下,这种算法会产生很多次优路径,也就是说非最短路径。...这个算法也可以在一个图中,找到从一个顶点s到任何其他顶点的最短路径

    2.1K40

    Floyd算法最短路径

    floyd算法用于求图中各个点到其它点的最短路径,无论其中经过多少个中间点。该算法的核心理念是基于动态规划,不断更新最短距离,遍历所有的点。...算法核心:遍历图中的每一个点,通过该点的入读和出度来计算以该点作为中间点连接另外两点的距离,来与原来的距离作比较,存最小的值,不断刷新。...: {trace_str}")for i in data: print(i)show_trace(0,4) # 求A到E的最短路径show_trace(0,6) # 求A到G的最短路径#[0,...: [0--> 1--> 4]#从 0 到 6 的最短路径为: [0--> 3--> 5--> 6]接下再用2021蓝桥杯pythonA组的题目来深入理解【问题描述】小蓝学习了最短路径之后特别高兴,他定义了一个特别的图...,希望找到图中的最短路径

    31830

    最短路径算法补充版

    (Dijkstra Algorithm)的原理最短路径算法是一种用于寻找图中两个顶点之间最短路径算法。...最短路径可以根据路径上边的权重进行比较。Dijkstra算法是最常用和最流行的最短路径算法之一。它被广泛应用于网络路由算法、地图导航等领域。...Dijkstra算法的基本原理是从起点开始,逐步计算出到其他各个顶点的最短路径,并在计算的过程中维护一个待确定的最短路径集合。具体步骤如下:创建一个顶点集合,将起点添加到集合中。...在未确定最短路径的顶点中,选择距离最小的顶点,将其添加到已确定最短路径的集合中。重复步骤3和步骤4,直到所有顶点都被添加到已确定最短路径的集合中,或者找到目标顶点的最短路径。...最终,通过该算法可以得到起点到其他各个顶点的最短路径以及对应的距离。最短路径问题的解决示例为了更好地理解和演示Dijkstra算法的原理,我们将使用一个简单的例子来解决最短路径问题。

    22940

    最短路径之Dijkstra算法

    最短路径之Dijkstra算法 最近使用最短路径算法...,便将经典的最短路径算法梳理了一下。...Floyd算法简单暴力,三个for循环搞定。但是相应是要付出代价的,时间复杂度为O(n^3)。...今天学习的是一个O(n^2)的算法--经典Dijkstra(迪杰斯特拉)算法,这也是经典贪心算法的好例子。 Dijkstra算法是一种典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。...(单源最短路径算法描述: 算法思想: 设G=(V,E)是一个带权(或者不加权)有向图(或者无向图),把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径

    18410
    领券