图论是研究图的数学理论和方法,其中图是由顶点集合及连接这些顶点的边集合组成的数学结构。图论在计算机科学、网络规划、生物信息学等众多领域都有重要应用。最小生成树(Minimum Spanning Tree,MST)是图论中一个经典问题,指在一个加权连通图中寻找一棵权值最小的生成树。克鲁斯卡尔(Kruskal)算法和普利姆(Prim)算法是解决最小生成树问题的两种著名算法。
最小生成树算法用于在一个连通加权无向图中找到一个生成树,使得生成树的所有边的权重之和最小。最小生成树问题在许多实际应用中都有重要的作用,例如网络设计、电力传输等。
在连通网中查找最小生成树的常用方法有两个,分别称为普里姆算法和克鲁斯卡尔算法。本节,我们给您讲解克鲁斯卡尔算法。
克鲁斯卡尔算法是一种求解最小生成树问题的算法,其在电子文档管理系统中可以用于优化文档的管理和存储。
克鲁斯卡尔算法是一种用于解决最小生成树问题的贪心算法。在电脑监控软件中,可以将网络节点之间的连接关系抽象为一张图,然后使用克鲁斯卡尔算法来寻找最小生成树,即最小的连接所有节点的路径。
克鲁斯卡尔算法是一种用于解决最小生成树问题的贪心算法。在文档管理软件中,可以将网络节点之间的连接关系抽象为一张图,然后使用克鲁斯卡尔算法来寻找最小生成树,即最小的连接所有节点的路径。
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
我们在前面讲过的《克里姆算法》是以某个顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树的。同样的思路,我们也可以直接就以边为目标去构建,因为权值为边上,直接找最小权值的边来构建生成树也是很自然的
从边赋权图上选择一部分边得到一个子图,子图与原图具有共同的顶点,子图的边是原图的边的子集,且子图具有最小的开销(边的权值之和最小),符合这样要求的子图称作最小生成树,这类问题称作最小生成树问题。
首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林不产生回路,直至森林变成过一棵树为止
我们在图的定义中说过,带有权值的图就是网结构。一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边。所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小。综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree)。 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法。 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,如图7-6
克鲁斯卡尔算法其实也是生成最小生成树的一种算法,和普里姆算法一样,解决同一类问题的。
之前学了用普里姆算法来求最小生成树的权值和,但是它的时间复杂度为O(|V2|),使用优先级队列优化后,可以优化为O(|E|log|V|)。
基本思想:(1)构造一个只含n个顶点,边集为空的子图。若将图中各个顶点看成一棵树的根节点,则它是一个含有n棵树的森林。(2)从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图。也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之(3)依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
Prim 算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中,算法从某一个顶点开始,逐渐长大覆盖整个连通网的所有顶点。
定义: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。[1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。 Kruskal算法简述: 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的
Kruskal 算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
连通网的最小生成树算法: 1.普里姆算法——”加点法”。 假设N=(V,{E})是连通网,TE为最小生成树的边集合。 (1)初始U={u0}(u0∈V),TE=φ; (2)在所有u∈U, v∈V-U的边(u,v)中选择一条代价最小的边(u0,v0)并入集合TE,同时将v0并入U;(并修正U-V中各顶点到U的最短边信息) (3)重复步骤(2),直到U=V为止。 此时,TE中含有n-1条边,T=(V,{TE})为N的最小生成树。 普里姆算法是逐步向U中增加顶点的“加点法”。
01 — 一个实际问题 要在n个城市之间铺设光缆,要求有2个: 这 n 个城市的任意两个之间都可以通信; 铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同,因此要使铺设光缆的总费用最低。 如下所示
无论是有向图还是无向图,主要的存储方式都有两种:邻接矩阵和邻接表。前者图的数据顺序存储结构,后者属于图的链接存储结构。
将一个具有 n 个顶点 e 条边的无向图存储在邻接矩阵中,则非零元素的个数是 2e。
1、在对无向图进行遍历时,对于连通图,仅需从图中任一顶点出发,进行深度优先搜索或广度优先搜索,便可访问到图中所有顶点。
"村村通"是国家一个系统工程,其包涵有:公路、电力、生活和饮用水、电话网、有线电视网、互联网等等。
应用图解决现实问题是我们使用图这种数据结构的原因所在。 最小生成树是图的应用中很常见的一个概念,一个图的最小生成树不是唯一的,但最小生成树的边的权值之和纵使唯一的。最小生成树的算法主要有Prim算法和Kruskal算法。这两种算法都是基于贪心算法策略(只考虑眼前的最佳利益,而不考虑整体的效率)。 拓扑排序是指由一个有向无环图的顶点组成的序列,此序列满足以下条件:
图跟树一样,也是非线性结构,咋看起来有点复杂,其实它很简单。树具有层次关系,上层元素可以与下一个多个元素连接,但是只能和上层的一个元素连接。在图结构中,节点间的连接是任意的,任何一个元素都可以与其他元素连接。
上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索。本篇博客就在上一篇博客的基础上进行延伸,也是关于图的。今天博客中主要介绍两种算法,都是关于最小生成树的,一种是Prim算法,另一个是Kruskal算法。这两种算法是很经典的,也是图中比较重要的算法了。 今天博客会先聊一聊Prim算法是如何生成最小生成树的,然后给出具体步骤的示例图,最后给出具体的代码实现,并进行测试。当然Kruskal算法也是会给出具体的示例图,然后给出具体的代码和测试用例。当然本篇博客中
图是一种非线性数据结构,它由节点(也称为顶点)和连接这些节点的边组成。图可以用来表示各种关系和连接,比如网络拓扑、社交网络、地图等等。图的节点可以包含任意类型的数据,而边则表示节点之间的关系。图有两种常见的表示方法:邻接矩阵和邻接表。
树是由n个结点所构成的有限集合,当n=0时,称为空树 树的表示法有4种,分别为:文氏图表示法、凹入图表示法、广义表表示法以及树形表示法 结点的度是指结点所拥有子树的数目 二叉树是一种特殊的树,它的每个结点最多只有两颗子树,并且这两课子树也是二叉树 在一棵二叉树中,若其所有结点或叶结点,或左、右子树都非空,且所有叶结点都在同一层,则称这棵二叉树为满二叉树 在二叉树的第i层上至多有2i个结点(i≥0) 深度为h(h≥0)的二叉树上至多含2h-1个结点 对于任何一棵二叉树,若其叶结点的个数为n0,度为2的结点个数
前言 A wise man changes his mind,a fool never. Name:Willam Time:2017/3/1
克鲁斯卡尔算法是求连通网的最小生成树的另一种方法。与普里姆算法不同,它的时间复杂度为O(eloge)(e为网中的边数),所以,适合于求边稀疏的网的最小生成树 。(百度百科) int n, m; // n是点数,m是边数 int p[N]; // 并查集的父节点数组 struct Edge // 存储边 { int a, b, w; bool operator< (const Edge &W)const { return w < W.
含有n个顶点的无向完全图有多少条边? n×(n-1)/2条边 含有n个顶点的有向完全图有多少条弧? n×(n-1)条边
带权图:边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
图结构是数据元素呈多对多关系,就是任意两个元素存在这样的关系。如果用一个公式来表示就是由顶点集合和顶点之间的关系集合组成的一种数据结构。
在学习了图的基本结构和遍历方式后,我们再继续地深入学习一些图的基本应用。在之前的数据结构中,我们并没接触太多的应用场景,但是图的这两类应用确是面试或考试中经常出现的问题,而且出现的频率还非常高,不得不来好好说一说。
有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通,各个村庄之间的距离如下。问如何修路,能使各个村庄连通且修路的总里程数最小?
一个连通的生成树是图中的极小连通子图,它包括图中的所有顶点,并且只含尽可能少的边。这意味着对于生成树来说,若砍去它的一条边,就会使生成树变成非连通图;若给它添加一条边,就会形成图中的一条回路。
案例: 数组 {1,3, 8, 10, 11, 67, 100}, 编程实现二分查找, 要求使用非递归的方式完成.
1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2925 Solved: 1927 Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道 路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连 接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示
图是非线性数据结构,是一种较线性结构和树结构更为复杂的数据结构,在图结构中数据元素之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。
一(基本概念) 1.图的定义:图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。 2.与线性表、树的比较: (1)线性表中我们把数据元素叫元素,树中将数据元素叫结点,在图中数据元素,我们则称之为顶点。 (2)线性表中可以没有数据元素,称为空表。树中可以没有结点,叫做空树。在图结构中,不允许没有顶点。 (3)线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图中,任意两个顶点之间都可能有关系
在上一篇文章中,我们看了一下图的遍历算法,主要是对图的深度优先遍历和图的广度优先遍历算法思想的介绍。接下来让我们来看一下图的最小声成树算法。
有向图和无向图的表示法有略微的区别,注意看 G1有箭头,有向图,表示方法是 V={V~0~,V~1~,V~2~,V~3~} E = {<V~0~,V~1~>,<V~1~,V~2~>,<V~1~,V~0~>,<V~2~,V~0~>,<V~2~,V~3~>} G2无箭头,无向图,表示方法是 V={V~0~,V~1~,V~2~,V~3~} E = {(V~0~,V~1~),(V~1~,V~2~),(V~0~,V~2~),(V~2~,V~3~)}
假定每次执行第i行所花的时间是常量ci;对 j = 2, 3, … n, 假设tj表示对那个值 j 执行while循环测试的次数。
github地址,阅读原文可查看仓库代码: https://github.com/trekhleb/javascript-algorithms/
最小生成树 生成树(极小连通子图):含有图中全部n个顶点,但只有n-1条边。并且n-1条边不能构成回路。 [在这里插入图片描述] 生成森林:非连通图每个连通分量的生成树一起组成非连通图的生成森林。 [在这里插入图片描述] 求最小生成树 使用不同的遍历图的方法,可以得到不同的生成树 从不同的顶点出发,也可能得到不同的生成树。 按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点、n-1 条边。在网的多个生成树中,寻找一个各边权值之和最小的生成树 构造最小生成树的准则 必须只使用该网中的边来构造最小生成
1. 二分查找(非递归) 代码实现 public class BinarySearchNoRecursion { public static void main(String[] args) { int[] arr = {1, 23, 46, 413, 880, 999}; int index = binarySearch(arr, 999); System.out.println(index); } /** * 二分查找
普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。 基本思想 对于图G4而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中
领取专属 10元无门槛券
手把手带您无忧上云