在一给定的无向图 G = ( V , E ) G = (V, E) G=(V,E) 中, ( u , v ) (u, v) (u,v)代表连接顶点 u u u 与顶点 v v v 的边,而 w ( u , v ) w(u, v) w(u,v) 代表此边的权重,若存在 T T T 为 E E E 的子集且为无循环图,使得 w ( T ) w(T) w(T) 最小,则此 T T T 为 G G G 的最小生成树,因为 T T T是由图 G G G产生的。
贪心算法就是让计算机模拟一个「贪心的人」来做出决策。这个贪心的人是目光短浅的,他每次总是:
贪心算法的基本思想是每一步都选择当前状态下的最优解,通过局部最优的选择,来达到全局最优。
贪心算法是一种基于启发式的问题解决方法,它通过每一步选择局部最优解来构建全局最优解。本篇博客将深入探讨贪心算法的原理,提供详细的解释和示例,包括如何在 Python 中应用贪心算法解决各种问题。
Dijkstra’s algorithm(迪杰斯特拉算法)是一种用于求解单源最短路径问题的经典算法。该算法可以计算从单个起始节点到图中所有其他节点的最短路径。Dijkstra’s algorithm适用于没有负权边的有向或无向带权图。
在图论中,最小生成树是一个重要的概念,它是一个连通图的子图,包含图中的所有节点,并且边的权重之和最小。 Prim 算法和 Kruskal 算法是两种常用的最小生成树算法。本篇博客将重点介绍这两种算法的原理、应用场景以及使用 Python 实现,并通过实例演示每一行代码的运行过程。
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不再连通;反之,在其中引入任何一条新边,都会形成一条回路。
排序算法是一类用于对一组数据元素进行排序的算法。根据不同的排序方式和时间复杂度,有多种排序算法。常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
从边赋权图上选择一部分边得到一个子图,子图与原图具有共同的顶点,子图的边是原图的边的子集,且子图具有最小的开销(边的权值之和最小),符合这样要求的子图称作最小生成树,这类问题称作最小生成树问题。
本篇我们会聊聊最小生成树,最小生成树和之前的无向图最大的区别是这个每一条边都是带有权重的。在聊最小生成树之前 我们要先聊两个理念,因为最小生成树是基于这两个理念的基础上得到的相关数据结构算法。
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。 基本思路 1、建立数学模型来描述问题; 2、把求解的问题分成若干个子问题; 3、对每一子问题求解,得到子问题的局部最优解; 4、把子问题的解局部最优解合成原来解问题的一个解。 算法实现 1、从问题的某个初
贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。 基本思路 建立数学模型来描述问题; 把求解的问题分成若干个子问题; 对每一子问题求解,得到子问题的局部最优解; 把子问题的解局部最优解合成原来解问题的一个解。 算法实现 从问题的某个初始解出发
贪心算法的核心思想是每一步都选择当前最优的决策,不考虑未来的影响。贪心算法的基本步骤通常包括以下几个:
应用图解决现实问题是我们使用图这种数据结构的原因所在。 最小生成树是图的应用中很常见的一个概念,一个图的最小生成树不是唯一的,但最小生成树的边的权值之和纵使唯一的。最小生成树的算法主要有Prim算法和Kruskal算法。这两种算法都是基于贪心算法策略(只考虑眼前的最佳利益,而不考虑整体的效率)。 拓扑排序是指由一个有向无环图的顶点组成的序列,此序列满足以下条件:
1. 图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存储,那顶点和顶点之间的关系该如何存储呢?其实有两种方式可以存储顶点与顶点之间的关系,一种就是利用二维矩阵(二维数组),某一个点和其他另外所有点的连接关系和权值都可以通过二维矩阵来存储,另一种就是邻接表,类似于哈希表的存储方式,数组中存储每一个顶点,每个顶点下面挂着一个个的结点,也就是一个链表,链表中存储着与该结点直接相连的所有其他顶点,这样的方式也可以存储结点间的关系。
上一篇文章,我们讲了图的创建和遍历,其中遍历的算法主要有BFS(广度优先算法)和DFS(深度优先算法)两种,并且DFS算法对很多问题都有很好的启示!而今天我们要说一个非常实用的算法——最小生成树的建立!这是图论中一个经典问题,可以使用Kruskal和Prim两种算法来进行实现!
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。
克鲁斯卡尔算法是一种用于解决最小生成树问题的贪心算法。在电脑监控软件中,可以将网络节点之间的连接关系抽象为一张图,然后使用克鲁斯卡尔算法来寻找最小生成树,即最小的连接所有节点的路径。
目录 在线练习 在线编程面试 数据结构 算法 贪心算法 位运算 复杂度分析 视频教程 面试宝典 计算机科学资讯 文件结构 在线练习 LeetCode Virtual Judge CareerCup HackerRank CodeFights Kattis HackerEarth Codility Code Forces Code Chef Sphere Online Judge – SPOJ 在线编程面试 Gainlo Refdash 数据结构 链表 链表
Python算法设计篇(7) Chapter 7: Greed is good? Prove it! It’s not a question of enough, pal. ——Gordon
算法和数据结构是计算机科学中的核心概念,它们贯穿了软件开发的方方面面。在本文中,我们将深入探讨一些重要的算法和数据结构,包括排序、双指针、查找、分治、动态规划、递归、回溯、贪心、位运算、深度优先搜索(DFS)、广度优先搜索(BFS)以及图算法。通过理解这些概念和技巧,您将能够更好地解决各种计算问题,提高编程技能,并准备好面对编程挑战。
克鲁斯卡尔算法是一种用于解决最小生成树问题的贪心算法。在文档管理软件中,可以将网络节点之间的连接关系抽象为一张图,然后使用克鲁斯卡尔算法来寻找最小生成树,即最小的连接所有节点的路径。
本文在写作过程中参考了大量资料,不能一一列举,还请见谅。 贪心算法的定义: 贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。 解题的一般步骤是: 1.建立数学模型来描述问题; 2.把求解的问题分成若干个子问题; 3.对每一子问题求解,得到子问题的局部最优解; 4.把子问题的局部最
它的最小生成树是什么样子呢?下图绿色加粗的边可以把所有顶点连接起来,又保证了边的权值之和最小:
一个连通的生成树是图中的极小连通子图,它包括图中的所有顶点,并且只含尽可能少的边。这意味着对于生成树来说,若砍去它的一条边,就会使生成树变成非连通图;若给它添加一条边,就会形成图中的一条回路。
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算
数据结构与算法 基本算法思想 动态规划 贪心算法 回溯算法 分治算法 枚举算法 算法基础 时间复杂度 空间复杂度 最大复杂度 平均复杂度 基础数据结构 数组 动态数组 树状数组 矩阵 栈与队列 栈 队列 阻塞队列 并发队列 双端队列 优先队列 堆 多级反馈队列 线性表 顺序表 链表 单链表 双向链表 循环链表 双向循环链表 跳跃表 并查集 哈希表(散列表) 散列函数 碰撞解决办法: 开放地址法 链地址法 再次哈希法 建立公共溢出区 布隆过滤器 位图 动态扩容 树 二叉树: 各种遍历,递归与非递归 二
生成树的定义:对于一个图G,获取G的边使得所有的顶点都连接到。最小生成树(MST Minimun spanning tree):给定图G(V,E),以及对应的边的权重,获取一颗总权重最小的生成树。
算法在编程中的作用极其重要,它们是解决复杂问题的关键工具和方法。以下是一些关键的总结:
在计算机科学中,贪心算法是一种重要的算法设计策略。它基于一种贪婪的策略,每一步都做出在当前看来最好的选择,希望这样的局部最优解能够导向全局最优解。尽管贪心算法并不总是能找到全局最优解,但在许多情况下,它能够提供相当接近最优解的有效解决方案。
由于事物之间普遍联系的哲学原理,网络结构无处不在。例如,微信用户之间的好友关系形成社群网络,科学论文间的相互引用关系形成文献网络,城市之间的道路连接形成交通网络 …… 可以说,万事万物都处在一个复杂网络当中。马克思·韦伯也说:人是悬挂在自己编织的意义之网上的动物。网太重要了,所以我们每次到一个新的地方,我们都会问:老板,有网吗?wifi密码是什么?
基本思想:(1)构造一个只含n个顶点,边集为空的子图。若将图中各个顶点看成一棵树的根节点,则它是一个含有n棵树的森林。(2)从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图。也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之(3)依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。
最小生成树 生成树(极小连通子图):含有图中全部n个顶点,但只有n-1条边。并且n-1条边不能构成回路。 [在这里插入图片描述] 生成森林:非连通图每个连通分量的生成树一起组成非连通图的生成森林。 [在这里插入图片描述] 求最小生成树 使用不同的遍历图的方法,可以得到不同的生成树 从不同的顶点出发,也可能得到不同的生成树。 按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点、n-1 条边。在网的多个生成树中,寻找一个各边权值之和最小的生成树 构造最小生成树的准则 必须只使用该网中的边来构造最小生成
对于贪心算法,我们要先将问题简化,然后依据贪心算法的理念,例如可以一起进行的事情,让他们一起进行。可以用一个条件完成的,就用一个条件完成。贪心算法就像人的贪心理念一样,先将可以贪的贪干净,然后在考虑特殊的情况,这样可以很好地进行代码的编写。
贪心算法是一种优化问题的解决方法,它每步选择当前状态下的最优解,最终希望通过局部最优的选择得到全局最优解。在本文中,我们将深入讲解Python中的贪心算法,包括基本概念、算法思想、具体应用场景,并使用代码示例演示贪心算法在实际问题中的应用。
贪心算法 先来比较一下贪心算法和动态规划 贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择,不考虑整体,只考虑局部最优,所以它不一定能得到最优解; 动态规划则是每个步骤都要进行一次选择,但选择通常要依赖子问题的解,所以它是考虑整体的,由于通常要依赖子问题的解,所以一般选自自底向上自带备忘的机制,所以一定是最优解; 最优子结构的概念 如果一个问题的解包含其子问题的最优解,则称该问题具有最优子结构,也就是求解大问题的解,是通过求解小问题取解决 如果理解了最优子结构,则会发现贪心算法和动态规划都
常见的数据结构中树的应用较多一些,在树的节点关系中称之为父子关系,而在一些特定场景下图能更清晰表达。
案例: 数组 {1,3, 8, 10, 11, 67, 100}, 编程实现二分查找, 要求使用非递归的方式完成.
图是一种在计算机科学中广泛应用的数据结构,它能够模拟各种实际问题,并提供了丰富的算法和技术来解决这些问题。本篇博客将深入探讨图数据结构,从基础概念到高级应用,为读者提供全面的图算法知识。
并查集是一种用途广泛的数据结构,能够快速地处理集合的合并和查询问题,并且实现起来非常方便,在很多场合中都有着非常巧妙的应用,。 本文首先介绍并查集的定义、原理及具体实现,然后以其在最小生成树算法中的一个经典应用为例讲解其具体使用方法。 一 并查集原理及实现 并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。 并查集在使用中通常以森林来表示,每个集合组织为一棵树,并且以树根节点为代表元素。实际中以一个数组father[x]即可实现,表示节点x的父亲节点。另外用一个变量n表示节点的个数。但为了
贪心算法(Greedy Algorithm)的基本思想是,在每一步中都选择局部最优的解,最终得到全局最优解。也就是说,贪心算法是在一定的约束条件下,逐步地构建问题的解,通过每一步选择局部最优的策略来达到全局最优的解。贪心算法的求解过程非常高效,但有时可能会得到次优解或者无解。因此,在应用贪心算法时,需要注意问题的约束条件和性质,以及选取合适的贪心策略。
英语:greedy algorithm,又称贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。
贪心的意思在于在作出选择时,每次都要选择对自身最为有利的结果,保证自身利益的最大化。贪心算法就是利用这种贪心思想而得出一种算法。
前言 在数据结构与算法的图论中,(生成)最小生成树算法是一种常用并且和生活贴切比较近的一种算法。但是可能很多人对概念不是很清楚,什么是最小生成树? 一个有 n 个结点的连通图的生成树是原图的极小连通子
图片 第一部分:算法概述 算法定义:一系列解决问题的清晰易行的步骤和规则。以编程实现,输入为问题实例,输出为问题解。 算法特征:输入、输出、有穷性、确定性、可行性。算法必须有清晰的输入与输出,步骤必须能在有限时间内结束,为任意输入都可以给出解,并且解得出的结果是正确的。 算法类族:递归算法、迭代算法、确定算法、非确定算法、Exact算法、Heuristic算法等。递归算法通过递归解决子问题,迭代通过循环;确定算法对每组输入都给出同样的输出,非确定算法输出随输入变化。Exact算法可以给出最优解,Heuri
通俗易懂的讲就是最小生成树包含原图的所有节点而只用最少的边和最小的权值距离。因为n个节点最少需要n-1个边联通,而距离就需要采取某种策略选择恰当的边。
事在人为,盛衰之理,虽曰天命,岂非人事哉!原庄宗之所以得天下,与其所以失之者,可以知之矣。------------《伶官传序》
领取专属 10元无门槛券
手把手带您无忧上云