这个算法有点难度,一般比较标准的描述网页上也有相关的描述,我在这里就简单的用十分通俗的语言给大家入个门
KM算法是在匈牙利算法的基础上衍生,在二分图匹配的问题上增加权重,变成了一个带权二分图匹配问题,求最优的二分图匹配。
生活或工作中,我们常常碰到分配问题。比如公司有n个任务,由n个工人来做,每个工人不同程度地擅长一个或几个任务。如果你是管理层,如何布置任务最大程度地发挥大家所长使公司效率更高?又如,某相亲舞会,有n个俊男和n个靓女参加,每个靓女对不同气质和形象的俊男有不同好感度。如果你是主持人,如何分配跳舞伴侣使总体好感度最高?再如,奥运赛场上,乒乓球团体赛要求双方各出n名运动员一一角逐,取胜多的一方最终获胜。作为教练,你了解自己队员的实力以及战胜对方队员的把握,在已知对方出场顺序情况下,如何给出一个队员出场顺序使得最终获胜把握最大?
前言 大家好,祝大家2017年身体健康,万事如意,开年第一篇blog网路流,希望大家指正。 网路流问题介绍 描述 设给定有向图G=(V,E),其边的容量为cvw.(这些容量可以代表通过一个管道的水的流量或者马路上的交通流量) s为发点,t为收点,最大网络流问题是求从s到t可以通过的最大流量。 性质 在既不是发点s,也不是收点t的任意顶点v,总的进入流必须等于总的发出流。 实际应用举例 最大网络流可以解决二分匹配问题. 二分匹配问题定义 找出E的最大子集E`使得没有顶点含在多于一条的边中。 图解说明 imag
本篇博客主要讲解什么是二分图,怎样判断二分图,匈牙利算法和HK(Hopcroft-Karp)算法,以及二分图多重匹配。
在科学研究中,从方法论上来讲,都应先见森林,再见树木。当前,人工智能科技迅猛发展,万木争荣,更应系统梳理脉络。为此,我们特别精选国内外优秀的综述论文,开辟“综述”专栏,敬请关注。
如图所示,其中的三条边即该图的一个匹配。所以,匹配的两个重点:1. 匹配是边的集合;2. 在该集合中,任意两条边不能有共同的顶点。 那么,我们自然而然就会有一个想法,一个图会有多少匹配?有没有最大的匹配(即边最多的匹配呢)?
复杂度是衡量算法好坏的标准之一,我们需要掌握计算算法时间复杂度和空间复杂度的方法。计算时间复杂度的方法一般是找到执行次数最多的语句,然后计算语句执行次数的数量级,最后用大写 O 来表示结果。
DTW算法又叫动态时间规整( Dynamic Time Warping),是一个比较简单的dp算法。常用于不等长的离散的路径点的匹配问题,在孤立词语音识别、手势识别、数据挖掘和信息检索等领域有着很不错的表现。
图像配准目的在于比较或融合。针对同一对象在不同条件下获取的图像,因为激光扫描光束受物体遮挡的原因,不可能通过一次扫描完成对整个物体的三维点云的获取。因此需要从不同的位置和角度对物体进行扫描。三维匹配的目的就是把相邻扫描的点云数据拼接在一起。三维匹配重点关注匹配算法,常用的算法有最近点迭代算法 ICP和各种全局匹配算法。 ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法。如下图所示,PR(红色点云)和RB(蓝色点云)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠。
二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)G=(V,E)是一个无向图。如顶点集VV 可分割为两个互不相交的子集,并且图中每 条边依附的两个顶点都分属两个不同的子集。则称图GG 为二分图。我们将上边顶点集合称 为XX 集合,下边顶点结合称为YY 集合,如下图,就是一个二分图。
目前,在计算机这个学科中有两个非常重要方向:一个是离散优化的经典算法-图算法,例如SAT求解器、整数规划求解器;另一个是近几年崛起的深度学习,它使得数据驱动的特征提取以及端到端体系结构的灵活设计成为可能。
GitHub 链接:https://github.com/martius-lab/blackbox-backprop
作为一种常用的图数据处理技术,图匹配在计算机视觉中拥有丰富的应用场景和研究价值。CVPR2018最佳论文提名的工作Deep Learning of Graph Matching [1]首次将端到端的深度学习技术引入图匹配,提出了全新的深度图匹配框架。本文将首先介绍图匹配问题的背景知识,随后对深度图匹配论文进行深入的解读。
本项目基于chatterbot0.8.7来开发,但不仅于此。让我们先对chatterbot做一个简单的了解。
图匹配是计算机视觉和模式识别领域重要的NP难问题。本文主要介绍了基于随机游走的图匹配算法RRWM [1]以及它在超图匹配上的扩展RRWHM [2]。
相信不仅仅是C++中有这些问题,那么大家使用其他编程语言,也可以考虑一下这四个问题,栈和队列是如何实现的。
匈牙利算法解决的问题概述:有 n 项不同的任务,需要 n 个工人分别完成其中的 1 项,每个人完成任务的成本不一样。如何分配任务使得花费成本最少?
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/51533549, 来自: shiter编写程序的艺术
括号匹配问题可以通过栈的数据结构来解决。栈是一种后进先出(LIFO,Last In First Out)的数据结构,非常适合处理嵌套和匹配问题。其基本思想是:
案例: 数组 {1,3, 8, 10, 11, 67, 100}, 编程实现二分查找, 要求使用非递归的方式完成.
二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图。简而言之,就是顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属于这两个互不相交的子集,两个子集内的顶点不相邻。(简单说就是把一个图的顶点分成两个集合,且集合内的点不邻接)
visualgo是新加坡国立大学计算机学院一位很棒的博士老师Dr. Steven Halim 在2011年写的一个可视化数据结构和计算机常用算法的开源项目,虽然现在没有维护了,但不可否认他依旧是一个很棒的网站。它最初的目的是为了帮助他的学生更好地理解算法和数据结构,但随着时间的推移,它已经成为了一个广受欢迎的在线教育工具。
相比其它文章阅读量,总体上还是很不错的,可能是里面的任务目标比较明确吧,直接上的题目,并且用到的知识都是非常少的(不涉及到具体领域,比如图像处理),纯粹是逻辑问题,以有限的知识,解决大多数问题应该是大家都比较喜欢的。
百度NLP专栏 作者:百度NLP 一、序言 文本匹配是自然语言处理中一个重要的基础问题,自然语言处理中的许多任务都可以抽象为文本匹配任务。例如网页搜索可抽象为网页同用户搜索 Query 的一个相关性匹配问题,自动问答可抽象为候选答案与问题的满足度匹配问题,文本去重可以抽象为文本与文本的相似度匹配问题。 传统的文本匹配技术如信息检索中的向量空间模型 VSM、BM25 等算法,主要解决词汇层面的匹配问题,或者说词汇层面的相似度问题。而实际上,基于词汇重合度的匹配算法有很大的局限性,原因包括: 1)语言的多义同
最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN。
模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。
由上海交通大学研究团队独立完成的论文Learning CombinatorialEmbedding Networks for Deep Graph Matching已被ICCV2019会议录用为Oral论文。
为了进行评估,新算法在四个公共基准上进行了测试,与包括非学习和基于学习的算法在内的八个最新基准进行了比较。该算法对噪声和异常值具有较强的鲁棒性,总体上优于所有的基线算法。
字符串匹配算法用于在一个文本串中查找一个模式串的出现位置。字符串匹配问题在文本处理、搜索引擎、数据分析等领域都有广泛的应用。
匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。
本文作者:Bang Liu、Di Niu等 文章之间关系匹配是自然语言处理领域的重要问题。传统算法忽略了文本内部语义结构,而深度神经网络目前主要用于句子对之间的匹配。同时由于长文本对计算量需求较大,且目前缺乏训练数据集,因此长文本的匹配问题一直难以解决。对此,来自阿尔伯塔大学和腾讯 PCG 移动浏览器产品部的研究者提出了概念交互图(Concept Interaction Graph)算法,对比现有的文章关系匹配算法有明显的效果提升。该论文已被自然语言处理顶会 ACL 2019 接收,项目代码和数据集已
ICCV 由IEEE 主办,每两年召开一次,与计算机视觉模式识别会议(CVPR)和欧洲计算机视觉会议(ECCV)并称计算机视觉方向的三大顶级会议。据了解,今年一共收到4328篇投稿,与上一届 2143 篇相比,数量超出一倍,“竞争”激烈。10 月 27 日 - 11 月 2 日,ICCV 2019 将在韩国首尔举行。
当我们在处理搜索业务时候,需求往往是灵活多变的,有时候我们需要精确匹配,有时候我们又需要全文检索,而有时候,我们又想匹配度高而且还能全文检索,这似乎是精确匹配和模糊匹配一个妥协的策略,没错这就是搜索引擎出现的目的,以往的数据库是没法解决这种问题的,数据库只能回答有,没有,存在,不存在,并不能在有和没有之间做一个完美的妥协,比如说能把最匹配最相关的结果放在topN,仅靠like模糊查询是解决不了这种问题的。 Apache Lucene这个强大的全文检索核心包,提供了搜索引擎的核心组件,通过相关性评分算法
作者:Zhihao Gavin Tang,Xiaowei Wu,Yuhao Zhang
滑动窗口算法(Sliding Window)是一种常用的双指针算法,被广泛应用于字符串和数组等数据结构中的子串或子数组问题,例如字符串匹配、最长子串、最小覆盖子串等问题。滑动窗口算法可以优化暴力枚举的时间复杂度,使得算法的执行效率更高。
太久没打了,刚好有道题用上了,就复习一下。 我觉得复到KMP应该就够用了,如果要AC自动机我直接死在那里。
输入数据的第一行是三个整数K , M , N,分别表示可能的组合数目,女生的人数,男生的人数。0<K<=1000 1<=N 和M<=500.接下来的K行,每行有两个数,分别表示女生Ai愿意和男生Bj做partner。最后一个0结束输入。
导语 | 在自然语言处理领域,文本表示学习技术可以帮助我们将现实世界转化为计算机可以处理的数据,以求更精准地建立学习模型。而在中文搜索场景下,同音词、易混词、错别字等文本的召回和相似度匹配一直存在着棘手的问题,本文通过图计算的角度来进行中文词向量的训练,并取得了积极的效果,希望与大家一同分享交流。
本文介绍的是新算法:用完全可训练的深度学习方式处理图匹配问题,论文《Learning Combinatorial Solver for Graph Matching》被 CVPR 2020接收为Oral论文。
判断两篇文章之间的语义关系对于新闻系统等应用有着重要的意义。例如,通过对新闻文章之间的关系判断,一个新闻应用可以将讲述同样的事件的文章聚类在一起,去除冗余,并形成事件发展的脉络。在图 1 中,「2016 美国总统大选」这一故事的主要信息被组织成一条故事树。其中的每个节点,代表了讲述该故事中同样的一个子事件的文章集。这种文本组织方式,在信息爆炸的时代,能给人们带来极大的便利。
我看到本题的第一想法是双指针法,但是我所构想的逻辑无法达到目的,具体来说我采用前后指针,依次前进,然后满足条件就跳过,这样就导致会忽略许多满足的结构,就让我十分头疼,调试了半天还是不行,甚至想要使用三指针,四指针…服啦!结果表明都是不行的。下面来一起看看正确解法吧
匈牙利算法在文档管理软件中的应用非常广泛。匈牙利算法可以用来解决二分图最大匹配问题,而在文档管理软件中,可以将计算机和网络设备之间的连接关系视为一个二分图,计算机和网络设备分别作为二分图的两个部分。
转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/51531333, 来自: shiter编写程序的艺术
导读:Indeed.com 每个月有两亿不同的访客,有每天处理数亿次请求的推荐引擎。在这篇文章里,我们将描述我们的推荐引擎是如何演化的,如何从最初的基于Apache Mahout建立的最简化可用行产品,到一个在线离线混合的成熟产品管道。我们将探索这些变化对产品性能指标的影响,以及我们是如何通过使用算法、架构和模型格式的增量修改来解决这些挑战的。进一步,我们将回顾在系统设计中的一些相关经验,相信可以适用于任何高流量的机器学习应用中。 ◆ ◆ ◆ 从搜索引擎到推荐 Indeed的产品运行在世界各地的许多数据中心
在上一篇文章当中我们介绍了一个有趣的稳定婚姻问题,模拟了男男女女配对的婚恋场景,并且研究了一下让匹配更加稳定的Gale-Shapley算法。如果错过了这篇文章的同学可以从下方的传送门回顾一下婚姻稳定问题的具体内容。
日前,苹果公司正式发布了2020 iPad Pro。设备采用A12Z芯片,并包括Ultra Wide摄像头和液态视网膜显示屏,以及常规的摄像头、传感器和扬声器阵列。但亮点功能是LiDAR扫描仪将用作深度传感器,而它具有促进全新层次AR体验的潜力。
图像识别、人脸识别可行的算法有很多。但是作为学习,如果能理清这个问题研究的历程及其主线,会对你深入理解当前研究最新的发展有很多帮助。本文是自己在学习过程中的笔记,大多内容来自于网络,出处请参考最后的引文部分。 Sift算法 Sift算法是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。Sift特征匹配算法可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力。总体来说,Sift算子具有以下特性: Sift特征是图像的局部特征,对平移
领取专属 10元无门槛券
手把手带您无忧上云