本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/113
/** * 递推算法 * 递推算法是一种理性思维模式的代表,其根据已有的数据和关系,逐步推导而得到结果。递推算法的执行过程如下: * (1)根据已知结果和关系,求解中间结果。 * 2)判定是否达到要求,如果没有达到,则继续根据已知结果和关系求解中间结果;如果满足要求,则表示寻找到一个正确的答案。 * 递推算法往往需要用户知道答案和问题之间的逻辑关系。 * 在许多数学问题中,都有着明确的计算公式可以遵循,因此往往可以采用递推算法来实现。 * * 数学里面的斐波那契数列便是一个使用递推算
1.比较笨的枚举算法思想 2聪明—点的递推算法思想 3.充分利用自己的递归算法思想 4.各个击破的分治算法思想 5.贪心算法思想并不贪婪 6.试探法算法思想是—种委婉的做法 7.迭代算法 8.模拟算法思想
因为公号迁移的原因,之前很多的文章都找不到了,就有小伙伴建议我把之前写过关于机器学习的文章再重新发一遍。于是我又花了点时间,重新整理了一下之前的文稿。
递推算法 给定一个数的序列H0,H1,…,Hn,…若存在整数n0,使当n>n0时,可以用等号(或大于号、小于号)将Hn与其前面的某些项Hi(0<i<n)联系起来,这样的式子就叫做递推关系。 递推算法是一种简单的算法,即通过已知条件,利用特定关系得出中间推论,直至得到结果的算法。 递推算法分为顺推和逆推两种。 相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值. 比如阶乘函数:f(n)=n*f(n-1) 在f(3)的
斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波那契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n =2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加。
数据结构和算法是程序的 2 大基础结构,如果说数据是程序的汽油,算法则就是程序的发动机。
以此我们得出兔子生崽的递推算法:其中有1对兔子,每个月都可以生一对兔子,但是任何的兔子都必须2个月大,即第3个月才有生育能力。
递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。 递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。 例题1——数字三角形
适用教材: 董付国,应根球.《中学生可以这样学Python》.清华大学出版社,2017. 第8章 常用算法的Python实现 8.3 递推算法案例分析 视频内容
动态规划定义 任何数学递推公式都可以直接转换成递推算法,但是编译器常常不能正确对待递归算法。将递归重新写成非递归算法,让后者把些子问题的答案系统地记录在一个表内。利用这种方法的一种技巧叫做动态规划 注:由已知推未知就是递推,由未知推未知就是递归,这里说的数学递推公式有别与递推算法。具体解释如下: 如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。 为什么编译器常常不能正确对待递归? 递归4条基本法则 基准情形。必须有某些基准情形,它无需递归就能解出。 不
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 昨天介绍了XGBoost的基本思想,说到新加入进来的决策树必须能使原已有的更好才行吧,那么将XGBoost这个提升的过程如何用数学模型来表达呢? 02 — XGBoost整体模型 机器学习的有监督问题,通常可以分为两步走:模型建立(比如线性回归时选用线性模型),根据目标函数求出参数(比如球出线性回归的参数)。对于XGBoost,
这是关于金字塔算法的惟一一本著作。金字塔算法是一种相当有效的方法,它运用一种基于金字塔式递推的动态编程方法,可以理解、分析和计算计算机辅助几何设计中最普遍的多项式和样条曲线曲面等问题。金字塔式递推算法在显示算法的整体结构上有明显的优势,可以很容易看出它们之间的联系,且学习这种方法只要求具备微分几何学和线性代数学的基础知识以及简单的编程技巧。阅读完本书后,势必会改变读者进行计算机辅助几何设计的思路以及具体的实现方式。
里程计模型 两轮差分底盘的运动学模型 优点: 结构简单 便宜(两个电机) 模型简单 航迹推算(Dead Reckoning) 车体坐标系转换到世界坐标系 里程计标定 线性最小二乘的基
递归函数的优点是算法设计容易, 但诋毁函数的优点是在牺牲了存储空间的基础上得到的。
递推和递归有着很多的相似之处,甚至可以看做是递归的反向。递归的目的性很强,只解需要解的问题,递推有点“步步为营”的味道,不断的利用已有的信息推导出新的东西,而递归是构造出了一个通过简化问题来解决问题的途径。 递推在组合数学中有着典型应用。
递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。 递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。
可以从多个角度来理解最小二乘方法,譬如从几何方面考虑,利用正交性原理导出。
接上篇博文《学习July博文总结——支持向量机(SVM)的深入理解(上) 》; 三、证明SVM 凡是涉及到要证明的内容和理论,一般都不是怎么好惹的东西。绝大部分时候,看懂一个东西不难,但证明一个东西则需要点数学功底;进一步,证明一个东西也不是特别难,难的是从零开始发明创造这个东西的时候,则显艰难。因为任何时代,大部分人的研究所得都不过是基于前人的研究成果,前人所做的是开创性工作,而这往往是最艰难最有价值的,他们被称为真正的先驱。牛顿也曾说过,他不过是站在巨人的肩上。你,我则更是如此。正如陈希孺院士在他的著作
Created with Raphaël 2.2.0 开始 选择正交变换,把时域信号转变为变换域信号 变换后的信号用其能量的平方根归一化 采用某一自适应算法进行滤波 结束
漂浮基座机器人存在动力学耦合,机械臂的关节运动将会引起基座位置和姿态的改变。根据基座的控制方式,可以将漂浮基座机器人分为四种模式:
C 语言支持递归,即一个函数可以调用其自身。但在使用递归时,程序员需要注意定义一个从函数退出的条件,否则会进入死循环。
有人提出了递归算法的时间复杂度问题,的确如此,递归的时间复杂度是随着数量级成指数增长的。
数学建模主要模型不单独写,参考数学模型第四版教材即可,只给出编程中一些重要的算法目录,如果有方法漏写,请评论区指出,笔者添加,谢谢QAQ
4.11编写算法,求得所有包含在串s中而不包含在串t中的字符(s中重复的字符只选一个)构成的新串r,以及r中每个字符在s中第一次出现的位置。
初赛的考察内容的一部分是计算机的基础知识,比如进制转换,工作原理,算法原理、历史事件名人等。这些对于大部分第一次参加noip的同学来说应该比较陌生,这样的知识只能通过平时的积累,用心做几套历年真题,有意识的去记忆。另一部分是数学内容,包括排列、组合等大概高中的数学知识,当然小学和初中奥数基础比较扎实的同学应该也学过。最后一部分是程序完成题目。如果说前面2部分还有补习的希望,最后这一部分完全是靠你的做题基础,没有捷径,只能靠你平时多做题。
美赛马上来了,总结一下这些年参赛的算法(我打编程位),数学建模主要模型不单独写,参考数学模型第四版教材即可,只给出编程中一些重要的算法目录,如果有方法漏写,请评论区指出,笔者添加,谢谢QAQ
友情提示: Latex加载稍慢,请耐心等待 什么是逆元? 若x满足 我们称x是a在 意义下的逆元 逆元的基本解法 https://loj.ac/problem/110 1.快速幂 当p为素数 根据费马小定理 带入快速幂就好啦 时间复杂度: 1 #include<cstdio> 2 #define LL long long 3 using namespace std; 4 const LL MAXN=200000001; 5 LL n,mod; 6 LL f
传统的递推算法是根据上一时刻的IMU状态量,利用当前时刻测量得到的加速度与角速度,进行积分得到当前时刻的状态量。但是在VIO紧耦合非线性优化当中,各个状态量都是估计值,并且会不断调整,每次调整都会重新进行积分,传递IMU测量值。预积分的目的是将相对测量量与据对位姿解耦合,避免优化时重复进行积分。四元数的表示方法有两种:一种是Hamilton(右手系)表示,另一种是JPL(左手系)表示。读者对公式推导时一定注意。
向量x称之为优化向量,f0是目标函数,fi是约束函数,问题在于满足约束条件下寻找最优解
先说一下背景,top2本博控制专业,一年前没有任何数据结构和算法系统知识,一年内系统的选了数据结构和算法课,同时先后经历了春招实习和秋招校招的洗礼,也完成了自己的升级,人总在进步也是一件值得开心的事情。
第三层、证明SVM 说实话,凡是涉及到要证明的东西.理论,便一般不是怎么好惹的东西。绝大部分时候,看懂一个东西不难,但证明一个东西则需要点数学功底,进一步,证明一个东西也不是特别难,难的是从零开始发明创造这个东西的时候,则显艰难。 话休絮烦,要证明一个东西先要弄清楚它的根基在哪,即构成它的基础是哪些理论。OK,以下内容基本是上文中未讲到的一些定理的证明,包括其背后的逻辑、来源背景等东西,还是读书笔记。 本部分导述 3.1节线性学习器中,主要阐述感知机算法; 3.2节非线性学习器中,主要阐述mercer定理;
基于均方误差最小化来进行模型求解的方法称为“最小二乘法(least square method)它的主要思想就是选择未知参数,(a5,b5)(a3,b3)(a1,b1)(a4,b4)(a2,b2)使得理论值与观测值之差的平方和达到最小。
上次了解了核函数与损失函数之后,支持向量机的理论已经基本完成,今天将谈论一种数学优化技术------最小二乘法(Least Squares, LS)。现在引用一下《正态分布的前世今生》里的内容稍微简单阐述下。我们口头中经常说:一般来说,平均来说。如平均来说,不吸烟的健康优于吸烟者,之所以要加“平均”二字,是因为凡事皆有例外,总存在某个特别的人他吸烟但由于经常锻炼所以他的健康状况可能会优于他身边不吸烟的朋友。而最小二乘法的一个最简单的例子便是算术平均。 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最
编者按:金融衍生品定价是量化金融中最为关键的问题,当考虑多种因素进行价格评估时会遇到“维数灾难”,这种高度非线性的拟合问题正是神经网络擅长解决的,本文中的最小二乘后向DNN方法(LSQ-BDNN方法)在前面研究基础上提出了将LSQ嵌入DNN的思路,在百慕大期权和CYN中得到了精确性和时效性的验证。
基本关于计算广告的每个模块都开始进行了一些记录,今天这个是关于计算广告算法的第一篇,也是从最基础的回归开始,逐渐加深,渗入到广告算法的各个模块中去,形成只关于广告的算法集合。也欢迎大家一起关注交流!
一、多阶段决策过程的最优化问题 在现实生活中,有类活 动的过程,由于 它的特殊性,可将过程分成若干个互相阶段。在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,这个问题看作是个前后关联具有链状结构的 多阶段过程就称为多阶段决策过程,这就称为多阶段决策问题。 多阶段决策过程,是指这样的一类特殊的活动过程,问题可以按时间顺序分解互联系的阶段,在每-个阶段都要作出决策,全部过程的决策是-个决策序列。
0 回顾 在最近的推送中,先后总结了最小二乘法的原理,两个求解方法:直接法和梯度下降,最后利用这两种思路进行了python实战。在用直接法求出权重参数时,有一个假设是某个矩阵不能为奇异矩阵。在实战中,我们发现如果它近似为奇异矩阵,然后再利用最小二乘法(OLS)去计算权重参数会出现bug。出现的是什么bug?在OLS算法的基础上应该怎么进行优化解决这个bug呢? 1 无偏估计 先看一个无偏估计的例子。工人师傅一天制造了1000个小零件,现在质检人员准备要检验这1000个件的合格数量和不合格数量,要求控制在
spark中的非负正则化最小二乘法并不是wiki中介绍的NNLS的实现,而是做了相应的优化。它使用改进投影梯度法结合共轭梯度法来求解非负最小二乘。 在介绍spark的源码之前,我们要先了解什么是最小二乘法以及共轭梯度法。
最小二乘法也是一种最优化方法,下面在第3章3.6节对最小二乘法初步了解的基础上,从最优化的角度对其进行理解。
https://www.cnblogs.com/armysheng/p/3422923.html
利用线特征来提高基于点的视觉惯性定位系统(VINS)的定位精度越来越受到关注,因为它们对场景结构提供了额外的约束.然而,在VINS整合线特征时的实时性尚未得到解决.
ALS是交替最小二乘(alternating least squares)的简称。在机器学习中,ALS特指使用交替最小二乘求解的一个协同推荐算法。它通过观察到的所有用户给商品的打分,来推断每个用户的喜好并向用户推荐适合的商品。举个例子,我们看下面一个8*8的用户打分矩阵
论文地址: http://arxiv.org/pdf/2102.03771v2.pdf
线性回归作为监督学习中经典的回归模型之一,是初学者入门非常好的开始。宏观上考虑理解性的概念,我想我们在初中可能就接触过,y=ax,x为自变量,y为因变量,a为系数也是斜率。如果我们知道了a系数,那么给我一个x,我就能得到一个y,由此可以很好地为未知的x值预测相应的y值。这很符合我们正常逻辑,不难理解。那统计学中的线性回归是如何解释的呢?
领取专属 10元无门槛券
手把手带您无忧上云