首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    1.算法设计与分析__递推算法

    递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。   递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。   例题1——数字三角形

    02

    算法分析与设计入门级--递推算法(这个要是学不会,就别学算法了)

    递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法。这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。这种处理问题的方法能使复杂运算化为若干步重复的简单运算,充分发挥出计算机擅长于重复处理的特点。   递推算法的首要问题是得到相邻的数据项间的关系(即递推关系)。递推算法避开了求通项公式的麻烦,把一个复杂的问题的求解,分解成了连续的若干步简单运算。一般说来,可以将递推算法看成是一种特殊的迭代算法。

    02

    学习July博文总结——支持向量机(SVM)的深入理解(下)

    接上篇博文《学习July博文总结——支持向量机(SVM)的深入理解(上) 》; 三、证明SVM 凡是涉及到要证明的内容和理论,一般都不是怎么好惹的东西。绝大部分时候,看懂一个东西不难,但证明一个东西则需要点数学功底;进一步,证明一个东西也不是特别难,难的是从零开始发明创造这个东西的时候,则显艰难。因为任何时代,大部分人的研究所得都不过是基于前人的研究成果,前人所做的是开创性工作,而这往往是最艰难最有价值的,他们被称为真正的先驱。牛顿也曾说过,他不过是站在巨人的肩上。你,我则更是如此。正如陈希孺院士在他的著作

    09

    『ACM-算法-动态规划』初识DP动态规划算法

    一、多阶段决策过程的最优化问题 在现实生活中,有类活 动的过程,由于 它的特殊性,可将过程分成若干个互相阶段。在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,这个问题看作是个前后关联具有链状结构的 多阶段过程就称为多阶段决策过程,这就称为多阶段决策问题。 多阶段决策过程,是指这样的一类特殊的活动过程,问题可以按时间顺序分解互联系的阶段,在每-个阶段都要作出决策,全部过程的决策是-个决策序列。

    02
    领券