首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

曲线拟合最小二乘法

曲线拟合最小二乘法 1. 线性拟合和二次拟合函数 1. 线性拟合 2. 二次拟合函数 3. 型函数 2. 解矛盾方程组 1....线性拟合和二次拟合函数 最小二乘法本质上就是求一个事先定义一个函数,然后使用已知的采样点结果拟合函数的参数,使得所有采样点的均方误差最小。...二次拟合函数 类似的,我们可以得到二次拟合函数的最小二乘法的结果。...型函数形如 的函数直接用最小二乘法倒是没法直接求解,不过可以通过一定的函数变换转换成 阶函数形式,然后我们就可以仿照上述方式进行求解了。...解矛盾方程组 书中这一小节事实上就是给前面最小二乘法的内容提供一些理论上的支持,没有啥更多的内容,因此,我们仅在这里摘录书中的定理如下: 定理3.1 (1) 为 行 列的矩阵, 为列向量

76220
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    机器学习十大经典算法最小二乘法

    利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。...简而言之,最小二乘法同梯度下降类似,都是一种求解无约束最优化问题的常用方法,并且也可以用于曲线拟合,来解决回归问题。 一元线性模型 如果以最简单的一元线性模型来解释最小二乘法。...plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False ''' 高斯列主消元算法...+求解线性方程组,误差下降为:{}'.format(error)) return A # 可视化多项式曲线拟合结果 def draw_fit_curve(xs, ys, A, order):...order, iternum=10000, learn_rate=0.001) draw_fit_curve(xs=xs, ys=ys, A=A, order=order) # 可视化多项式曲线拟合结果

    4.2K60

    最小二乘法简述

    最小二乘法,说白了其实就是解决线性回归问题的一个算法。这个算法最早是由高斯和勒让德分别独立发现的,也是当今十分常见的线性拟合算法,并不复杂。...我们常用的最小二乘法有两种,一种是普通方程表示的简单线性拟合问题,另一种是矩阵表示的高维度的线性拟合问题。...普通最小二乘法 他解决的基本问题其实就是给定一些数对 ,让你求出参数 ,使得直线 能够最好的拟合这个数据集,也就是使得他的平方损失函数取到最小值,即 Q=\underset{i=1}{\overset...矩阵最小二乘法 用矩阵表示的最小二乘法则更加方便,能够用非常简单的矩阵形式进行计算,而且能拟合多维度的线性方程。

    79020

    1分钟理解最小二乘法

    概念 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。...最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。...这就是最小二乘法,即: 这是一个二次函数,对其求导,导数为0的时候取得最小值,求得y为算术平均数的时候,正好误差最小。...推广 算术平均数只是最小二乘法的特例,适用范围比较狭窄,而最小二乘法用途广泛。 可以选择不同的f(x),通过最小二乘法可以对同一系列的点得到不一样的拟合曲线。...最小二乘法与正态分布 误差的分布是正态分布,那么最小二乘法得到的就是最有可能的值。 思考 为什么是最小二乘法,而不是最小三乘法、最小456789乘法呢?

    2.2K20

    数学建模--拟合算法

    拟合算法是数学建模和数据分析中的一种重要方法,其目标是找到一个函数或曲线,使得该函数或曲线在某种准则下与给定的数据点最为接近。拟合算法可以用于数据预处理、模型选择和预测等多个领域。...常用的拟合算法 最小二乘法:这是最常用的拟合算法之一,通过最小化误差的平方和来寻找最佳拟合曲线。最小二乘法可以应用于线性回归、多项式回归等场景。...不同的拟合算法适用于不同类型的模型和数据集,选择合适的拟合方法可以显著提高模型的准确性和可靠性。理解拟合与插值的区别,并掌握常用的拟合算法及其应用场景,对于进行有效的数据建模和分析至关重要。...在不同的数据分布下,最小二乘法的表现可能会有所不同。 最小二乘法在处理正态分布数据时表现最佳。这是因为最小二乘法假设误差项服从正态分布,并且具有恒定的方差。...三次样条拟合与其他曲线拟合方法相比的优势和局限性。 三次样条拟合在曲线拟合中具有显著的优势和一些局限性。

    10710

    机器学习篇(2)——最小二乘法概念最小二乘法

    前言:主要介绍了从最小二乘法到 概念 顾名思义,线性模型就是可以用线性组合进行预测的函数,如图: image.png 公式如下: image.png image.png 误差是独立同分布的...实际问题中,很多随机现象可以看做众多因素的独立影响的综合反应,往往服从正态分布 写出损失函数: image.png 求解: image.png 求得的杰刚好和线性代数中的解相同 最小二乘法...用投影矩阵可以解决线代中方程组无解的方法就是最小二乘法,其解和上述解一样 image.png 例子:用最小二乘法预测家用功率和电流之间的关系 数据来源:http://archive.ics.uci.edu...之后每次运行的随机数不会改变 x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=0) #转化为矩阵形式,进行最小二乘法运算

    1.9K50

    matlab如何做正交多项式曲线拟合,matlab正交多项式拟合

    在实验模态分析中用 Matlab 实现离散化正交多项式算法 [C], 马永列; 陈章 位; 胡海清 4.在实验模态分析中用 Matlab 实现离散化正交多项式算法 [C], 马永列…… 变换后的条件数上限表如下...上的高斯…… 就能用 matlab 或者别的 工具对信号做小波变换的基本分析并且知道这个分析大概是…这完全取决于具 体的使用需求,比如泰勒展开的 basis 就只是简单的非正交多项式…… 掌握 由离散点求曲线拟合的方法...二次多项式拟合程序如下:(程序中如果想显示结果就不加分号,图1-2) %多项式最小二乘法拟合,参照(《matlab实验实验指导书》李新平 实验六) 自己做的 %多项式…… 数值分析仿真报告–插值与拟合_...研究生课程 《数值分析》仿真实验报告,包括多项式插值,样条插值,最小二乘拟合,内附MATLAB源码 …… 曲线拟合与函数的数值逼近– 构造Legendre正交多项式 2015-3-27 2 MATLAB...… 计算过程和结果(1)题目中给出 10 组离散型数据,要求给出次数分别为 3,4,5,6 的多项 式拟合, 故选用离散正交多项式做曲线拟合

    1.5K30

    Swift-Voce模型及其曲线拟合

    关于应变率强化和温度软化效应的影响,可以阅读《Johnson-Cook模型及其曲线拟合》一文。...CurveFitter提供了Swift-Voce塑性模型的曲线拟合公式,只需要输入塑性应变与应力值,即可以得到拟合的参数值。...关于CurveFitter详情,参见《一款好用且免费的曲线拟合工具CurveFitter》与《一款好用且免费的曲线拟合工具CurveFitter》二文。操作方式如下:1....输出窗口显示了曲线拟合求解器的计算细节。4. Swift与Swift-Voce模型的曲线拟合步骤方法与Voce模型是一致的。值得注意的是,测试数据应使用真实塑性应变-真实应力。...曲线拟合需要考虑单位,在应用这些参数时,需要确定有限元软件的应力单位与测试数据的应力单位一致,这里测试数据使用的是MPa。

    48120

    广义最小二乘法是加权最小二乘法的特例_简述广义最小二乘法

    用这个方程来描述不同变量之间的关系, 而这个关系又无法做到想像函数关系那样准确, 因为即使你重复全部控制条件,结果也还有区别, 这时通过让回归方程计算值和试验点结果间差值的平方和最小来建立 回归方程的办法就是最小二乘法...首先普通最小二乘法是作为回归来使用,将预测值和真实值去比较,是这个误差函数最小,至于为什么叫二乘,因为这里取得是预测值和真实值的平方。...普通最小二乘法经常会引起欠拟合,因为普通最小二乘法将所有的序列值设置为相同的权重;但是对于实际中来说,一个时间序列,最近发生的应该比先前发生的更加重要,所以我们应该将最近发生的赋予更大的权重,先前发生的赋予小一点的权重...,这种就变成了加权最小二乘法。...对于普通最小二乘法,因为种种原因(原因以后分析。。)

    1.1K40

    MATLAB热传导方程模型最小二乘法模型、线性规划对集成电路板炉温优化

    最小二乘法模型: 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。...利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其它一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。...2.最小二乘法会将误差开平方,所以当某个预测值和真实值差别过大的时候,最小二乘法会愿意“牺牲”其他本来不错的数据点,使得整个拟合曲线受异常值扰动影响较 例如: 相应的炉温曲线如下: 给出各温区温度的设定值...基于粒子群优化的投资组合优化研究 R语言解决最优化运营研究问题-线性优化(LP)问题 R语言确定聚类的最佳簇数:3种聚类优化方法 matlab使用贝叶斯优化的深度学习 Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据...R语言使用随机技术差分进化算法优化的Nelson-Siegel-Svensson模

    26920
    领券