首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

阈值分割的OTSU算法

OTSU算法又叫最大类间方差阈值分割算法,也叫大津算法,是在1980年由日本的大津展之提出,是由最小二乘法推导而来,用于一些简单的阈值确定。...在这两个峰之间肯定有一个谷,那么我们就可以将阈值设在这里,从而对图像达到一个良好的分割效果。 怎样确定这个阈值呢?OTSU算法说,我们可以求出用这个阈值分割后的两个图像的类间方差。...对于每一个可能的阈值,我们计算并取出类间方差最大的那个像素值,此时这个值就可以较好的对图像进行分割。...算法 1、将灰度值分为0-m,对于0-m的每一个灰度t,将他作为阈值将图像分割为灰度为0-t以及t+1-m这两部分。...3、计算他们的类间方差\delta^2=w_1(u_1-u)^2+w_2(u_2-u)^2=w_1w_2(u_1-u_2)^2 4、取出类间方差最大时对应的阈值t,这就可以作为我们最终所取的阈值

1.8K30

自适应阈值分割的Bersen算法

游侠网的验证码总体来讲比较简单,字符分割比较清楚。稍微有难度的地方就是处理他的阴影。 ** 示例 ** 很明显,如果直接拿这种图去跑机器学习算法的话肯定准确率不高,必然需要进行灰度或者二值化。...但是由于灰度分布是不均匀的,如果采用类似OTSU的全局阈值显然会造成分割不准,而局部阈值分割的Bersen算法则非常适合处理这种情况。...原始的Bersen算法很简单,对于每一个像素点,以他为中心,取一个长宽均为((2w+1)^2)的核;对于这个核,取当中的极大值和极小值的平均值作为阈值,对该像素点进行二值化。...这个也很好理解,只要取一个适当的核的大小w,就可以在每一个局部内取得一个较好的阈值而不去考虑全局的其他像素。...实现效果 算法比较简单,而且OpenCV里直接给了个函数调用,方便省事。

1.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    06: 阈值分割

    目标 使用固定阈值、自适应阈值和Otsu阈值法"二值化"图像 OpenCV函数:cv2.threshold(), cv2.adaptiveThreshold() 教程 固定阈值分割 固定阈值分割很直接,...函数有4个参数: 参数1:要处理的原图,一般是灰度图 参数2:设定的阈值 参数3:对于THRESH_BINARY、THRESH_BINARY_INV阈值方法所选用的最大阈值,一般为255 参数4:阈值的方式...fontsize=8) plt.xticks([]), plt.yticks([]) plt.show()Copy to clipboardErrorCopied 参数1:要处理的原图 参数2:最大阈值...小结 cv2.threshold()用来进行固定阈值分割。固定阈值不适用于光线不均匀的图片,所以用 cv2.adaptiveThreshold()进行自适应阈值分割。 二值化跟阈值分割并不等同。...练习 Otsu阈值是一种高效的二值化算法,请阅读番外篇:Otsu阈值法 接口文档 cv2.threshold() cv2.adaptiveThreshold() cv2.ThresholdTypes()

    82830

    最大原理以及最大模型

    最大原理(Maxent principle) 最大原理是概率模型学习的一个准则。 书中通过一个例子来介绍最大原理,下面引用一下文献中关于这个例子的总结。...最大原理认为要选择的概率模型首先必须满足已有的事实,即约束条件 最大原理根据已有的信息(约束条件),选择适当的概率模型。 最大原理认为不确定的部分都是等可能的,通过最大化来表示等可能性。...最大的原则,承认已有的,且对未知无偏 最大原理并不直接关心特征选择,但是特征选择是非常重要的,因为约束可能是成千上万的。...,通常通过迭代算法求解。...目标函数 逻辑斯谛回归模型 图片 最大模型 改进的迭代尺度法(IIS) 改进的迭代尺度法(improved iterative scaling,IIS)是一种最大模型学习的最优化算法

    2.1K41

    经典分类算法最大模型

    已获 深度学习这件小事 授权 作者 刘建平Pinard zenRRan略有改动 最大模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型...而对的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大模型的原理做一个小结。...最大模型损失函数的优化 在上一节我们已经得到了最大模型的函数H(P)。它的损失函数−H(P)定义为: ? 约束条件为: ?...由于IIS一般只用于最大模型,适用范围不广泛,这里就不详述算法过程了,感兴趣的朋友可以直接参考IIS的论文The improved iterative scaling algorithm: A gentle...惯例,我们总结下最大模型作为分类方法的优缺点: 最大模型的优点有: a) 最大统计模型获得的是所有满足约束条件的模型中信息极大的模型,作为经典的分类模型时准确率较高。

    2K20

    最大模型与GIS ,IIS算法

    https://blog.csdn.net/u014688145/article/details/55003910 最大模型与GIS ,IIS算法 前言 在学习最大模型时,令我最大的困惑点在于它一些公式的物理含义是什么...Code Time 模型学习的最优算法GIS 以下内容摘自博文【码农场-逻辑斯谛回归与最大模型】 常用的方法有改进的迭代尺度法、梯度下降法、牛顿法或拟牛顿法,牛顿法或拟牛顿法一般收敛速度更快。...其中C一般取所有样本数据中最大的特征数量。 最原始的最大模型的训练方法是一种称为通用迭代算法 GIS(generalized iterative scaling) 的迭代 算法。...模型学习的最优算法IIS 《统计学习方法》关于IIS的理论推导写了一大堆,在博文【码农场-逻辑斯谛回归与最大模型】也全部推导过一遍了,所以具体的细节就不再赘述了。...最大IIS训练算法的Java实现 Fork自https://github.com/tpeng/maxent ,经过实测,hankcs所给的数据训练准确率可达0.7619。

    1.6K20

    大津阈值法原理_ostu阈值分割

    具体的公式推导参见冈萨雷斯 《数字图像处理》 Otsu方法又称最大类间方差法,通过把像素分配为两类或多类,计算类间方差,当方差达到最大值时,类分割线(即灰度值)就作为图像分割阈值。...Otsu还有一个重要的性质,即它完全基于对图像直方图进行计算,这也使他成为最常用的阈值处理算法之一。...算法步骤如下: Otsu只有在直方图呈现双峰的时候才会有一个很好的效果,在直方图单峰或多峰的情况下效果不是很好,那就需要通过实际情况来选取其他的方法来得到预期的分割效果。...代码如下; //返回阈值的大津阈值法 double Otsu_threshold(const cv::Mat& InputImage) { cv::Mat SrcImage = InputImage.clone...T //找类间方差最大值 for (int i = 0; i < sigma_ks.size(); ++i) { if (sigma_ks[i] > max_Sigma_k)

    1K10

    最大模型

    简介 最大模型由最大原理推导实现。 2. 最大原理 最大原理是概率模型学习的一个原则。最大原理认为,学习概率模型时,在所有可能的概率模型中,最大的模型是最好的模型。...通常用约束条件来确定概率模型的集合,因此最大原理也可以表述为在满足约束条件的模型集合中选取最大的模型。...直观上来看,最大原理认为要选择的概率模型首先必须满足已有事实,即约束条件。在没有更多信息的情况下,那些不确实的部分都是「等可能的」。最大原理通过最大化来表示等可能性。 3....H(P)H(P)H(P) 最大的模型称为最大模型。...模型学习:最大模型的学习可以形式化为约束最优化问题。

    31930

    机器学习算法系列(三):最大模型

    作者 | Ray 编辑 | 安可 出品 | 磐创AI技术团队 目录: 一、与条件 二、最大模型的思想 三、最大模型的定义 四、最大模型损失函数的优化求解 五、最大模型的优缺点 一、与条件...条件公式为: 二、最大模型的思想 最大模型认为,学习概率模型时,在所有可能的概率模型中,最大的模型是最好的模型。...若模型要满足一些约束条件时,则最大原理就是在满足已知条件的概率模型集合中,找到最大的模型。...可以发现以上的概率估计方法遵循了的恰恰是最大的原理。 三、最大模型的定义 最大模型假设分类模型是一个条件概率分布P(Y|X),X为输入特征,Y为类标。...因此最大的的损失函数为: 四、最大模型损失函数的优化求解 通过上一节的定义,我们给出最大模型的目标函数为: 最大模型的目标函数是带有约束的最优化问题,根据上一篇文章拉格朗日对偶性的学习,可以将这个问题转化为无约束最优化的问题

    1.3K20

    最大模型(MaxEnt)

    写在前面 当我们想要得到一个随机事件的概率分布时,如果没有足够的信息来完全确定其概率分布,那么最为保险的方法就是选择一个使得最大的分布。...所以条件有如下公式成立: 推导如下: 1.3相对 相对,又称互,交叉,鉴别信息,Kullback,Kullback-Leible散度等。...最后,借助强大的韦恩图来记住这些关系: 2.无约束条件   假设有一随机变量X是离散的,我们只是知道它有K个可能的取值,其余什么信息都不知道,那么我们该如何估计才能使得最大呢?...因此,不知道任何已知条件的情况下,离散的随机变量均匀分布时,它的最大。 3.最大原理   我们设数据集为 。   最大原理认为:在所有可能的概率模型中,最大的模型为最好的概率模型。...求最大模型的步骤大致为: 根据已知约束条件筛选出可能的概率模型 在所有可能的概率模型中选出一个最大的模型作为最终的模型 3.1构造约束条件   我们第一步要根据已知条件筛选出可能的概率模型,那么什么才是已知条件

    1.8K30

    最大的Java实现

    这是一个最大的简明Java实现,提供训练与预测接口。训练采用GIS训练算法,附带示例训练集。本文旨在介绍最大的原理、分类和实现,不涉及公式推导或其他训练算法,请放心食用。...最大理论 简介 最大属于辨识模型,能够满足所有已知的约束, 对未知的信息不做任何过分的假设。 什么叫已知的约束?...最大没有假设“天气”与“心情”独立分布,也没有承认“天气”对“心情”有影响,也许它的确有影响,但是最大只保证最终结果符合概率约束。...分类 最大模型根据样本信息进行概率估计可分为2 种:联合最大模型和条件最大模型。假设a 是某个事件,b 是事件a 发生的环境(或称上下文),则a 和b 的联合概率记为p(a, b)。...若要计算在b 的条件下,事件a 发生的概率,即概率p(a | b),则须建立条件最大模型。 本文实现的最大模型属于条件最大模型。

    83930

    区域与图像分割 —— 阈值选取

    许多机器视觉算法都只针对:由单个物体的表面所生成的图像。如果一个物体表面的图像没有覆盖整个视野,那么,我们必须想办法找出:相应的物体表面所对应的图像区域。...我们可以根据:灰度值低于某一阈值的图像单元的数目与图像单元总数的比值,来确定阈值。注意:现在,我们无法利用:根据(经过阈值化处理所得到的)二值图计算出来的面积信息。...在图像分割中,由于噪声的影响,无可避免地,一些像素点会被分错类。除了边缘附近,大部分这样的“错误”(即:像素点的错分)都是孤立的,这种“错误”被称为:椒盐噪声。...该图像单元是“异常的”,因此,我们可以将该图像单元的灰度值设置为:该点周围的像素点邻域中的最大灰度值。...但是,相比于:求最大值或最小值(甚至求平均数),计算中位数要困难得多。 通过上面这些方法,来减少被分错类的图像单元的数目。但是,这仍然无法保障取得好的分割结果。

    1.4K00

    最大模型原理小结

    最大模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型。...而对的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大模型的原理做一个小结。 1....和条件的回顾     在决策树算法原理(上)一文中,我们已经讲到了和条件的概念,这里我们对它们做一个简单的回顾。     度量了事物的不确定性,越不确定的事物,它的就越大。...最大模型损失函数的优化     在上一节我们已经得到了最大模型的函数$H(P)$。...由于IIS一般只用于最大模型,适用范围不广泛,这里就不详述算法过程了,感兴趣的朋友可以直接参考IIS的论文The improved iterative scaling algorithm: A gentle

    61110

    opencv 阈值分割的具体使用

    阈值分割 像素图 原始图像像素图 见下面 红色线:标注一条阈值线 ?...二进制阈值化 首先设定一条阀值线 如127 大于127的像素点灰度值设为最大(如unit8的格式为255) 小于127的像素点灰度值设为0 ?...相同 dst:处理结果的图像 src:原始图像 thresh:阈值阈值线,对应上文的红线 maxval:最大值,阈值分割后指定的最大值,有1和255。...最大值为1对应是二值化图像数据 type:类型,指定那种阈值 threshold 二进制阈值 把亮的处理成白色,暗的处理成黑色 区别二值化阈值:二值化只有0,1。 二进制阈值:可以有其他两个数。...到此这篇关于opencv 阈值分割的具体使用的文章就介绍到这了,更多相关opencv 阈值分割内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

    98021

    opencv 特征值_直方图阈值图像分割

    这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的每一个小区域计算与其对应的阈值。因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。...这时要把阈值设为 0。然后算法会找到最优阈值,这个最优阈值就是返回值 retVal。如果不使用 Otsu 二值化,返回的retVal 值与设定的阈值相等。   ...plt.xticks([]),plt.yticks([]) plt.show() 结果图: 4 、Otsu’s 二值化是如何工作的   在这一部分演示怎样使用 Python 来实现 Otsu 二值化算法...因为是双峰图, Otsu 算法就是要找到一个阈值(t), 使得同一类加权方差最小,需要满足下列关系式:   其实就是在两个峰之间找到一个阈值 t,将这两个峰分开,并且使每一个峰内的方差最小...实现这个算法的 Python 代码如下: import cv2 import numpy as np img = cv2.imread('image/lufei.jpeg',0) blur = cv2.

    62020
    领券