前言:“熵”最初是热力学中的一个概念,后来在信息论中引入了信息熵的概念,用来表示不确定度的度量,不确定度越大,熵值越大。极限情况,当一个随机变量均匀分布时,熵值最大;完全确定时,熵值为0。以最大熵理论为基础的统计建模已经成为近年来自然语言处理领域最成功的机器学习方法。
这是一个最大熵的简明Java实现,提供训练与预测接口。训练采用GIS训练算法,附带示例训练集。本文旨在介绍最大熵的原理、分类和实现,不涉及公式推导或其他训练算法,请放心食用。
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度。熵越大,系统越无序,意味着系统结构和运动的不确定和无规则;反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态。熵的中文意思是热量被温度除的商。负熵是物质系统有序化,组织化,复杂化状态的一种度量。 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大。 一滴墨水滴在清水中,部成了一杯淡蓝色溶液 热水晾在空气中,热量会传到
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/55003910
本文介绍对数线性分类模型,在线性模型的基础上通过复合函数(sigmoid,softmax,entropy )将其映射到概率区间,使用对数损失构建目标函数。首先以概率的方式解释了logistic回归为什么使用sigmoid函数和对数损失,然后将二分类扩展到多分类,导出sigmoid函数的高维形式softmax函数对应softmax回归,最后最大熵模型可以看作是softmax回归的离散型版本,logistic回归和softmax回归处理数值型分类问题,最大熵模型对应处理离散型分类问题。
关于最大熵原理有很多直观容易理解的解释,比如Berger的例子,比如吴军老师数学之美中的例子。
本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释最大熵模型。并且从名著中找了几个具体应用场景来帮助大家深入这个概念。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014688145/article/details/60758291
最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法了,它和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。而对熵的使用,让我们想起了决策树算法中的ID3和C4.5算法。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。
本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释最大熵马尔可夫模型。并且从名著中找了个具体应用场景来帮助大家深入这个概念。
【导读】两天前,专知公众号发布了深度学习顶会 ICLR 2018 匿名提交论文列表,今天我们很荣幸有老师和同学来自荐他们的在ICLR2018上的工作,后续我们会不断推出论文自荐活动,也希望愿意分享自己工作和成果的老师和同学多多和我们联系,希望专知伴随着大家一起成长,共同进步。 深度学习泛化研究:多层非线性复合是对最大熵原理的递归逼近实现 【前言】 深度学习在各领域得到成功应用的一个重要原因是其优秀的泛化性能。从ICLR 2017 “RethinkingGeneralization”的最佳论文到最近Hint
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 最大熵模型(maximum entropy model, MaxEnt)也是很典型的分类算法,和逻辑回归类似,都是属于对数线性分类模型。在损失函数优化的过程中,使用了和支持向量机类似的凸优化技术。理解了最大熵模型,对逻辑回归,支持向量机以及决策树算法都会加深理解。本文就对最大熵模型的原理做一个小结。 熵和条件熵 在(机器学习(9)之ID3算法详解及python实现)一文中,我们
熵度量的是事物的不确定性。越不确定的事物,它的熵就越大。具体的,随机变量熵的表达式为:
在有些情况下,我们知道目标函数的表达形式,但因为目标函数形式复杂不方便对变量直接求导。这个时候可以尝试找到目标函数的一个下界函数,通过对下界函数的优化,来逐步的优化目标函数。
感知机、k近邻法、朴素贝叶斯法、决策树 是简单的分类方法,具有模型直观、方法简单、实现容易等特点
概率图模型(probabilistic graphical model, PGM)指用图表示变量相关(依赖)关系的概率模型,主要分为两类:
监督学习可以认为是学习一个模型,使它能对给定的输入预测相应的输出。监督学习包括分类、标注、回归。本篇主要考虑前两者的学习方法。
本文介绍了条件随机场模型,首先对比了隐马尔科夫模型、最大熵马尔科夫模型、条件随机场模型。基于前二者存在的1)独立性假设问题,2)标注偏置问题,条件随机场采用最大熵模型的特征模板定义克服独立性问题,参数学习过程建立在最大化整条序列的概率,而不是在时刻上进行归一化。
1. 阅读本文前已全面了解统计机器学习中最大熵模型(MEM),有向图模型(DAG),无向图模型(UGM)等相关内容会获得更好阅读体验。
在前面的文章中,我们已经引入了通信和信息的概念,并介绍了信息度量的公式信息量和信息熵,相关内容请戳:
这几天NLP我也没有更新,并不是放弃了学习,而是寻找一条合适自己的路径,总结之后,列出来,供有同样志向的小伙伴参考,并且以后文章更新也将按照这个顺序更新,大家一起努力吧! 1:形式语言 2:自动机 3:NLP基本介绍 4:什么是语言模型 5:N-Gram介绍 6:语言模型的应用 7:语言模型的性能评估 8:什么是数据平滑 9:有哪些数据平滑的方法 10:自适应方法介绍 11:概率图模型概述 12:马尔科夫过程 13:隐马尔科夫过程(HMM) 14:HMM的三个基本问题 15:NLP的基本解码问题求解 16
Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。
决策树代表着一组if-else规则,互斥且完备。决策树的内部节点表示一个特征或者属性,叶节点表示一个类,也就是最终分类的确定是在叶结点上做的。 决策树要做的是与训练数据矛盾最小,同时具有良好泛化能力。
最大熵原理是概率模型学习的一个原则。最大熵原理认为,学习概率模型时,在所有可能的概率模型中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,因此最大熵原理也可以表述为在满足约束条件的模型集合中选取熵最大的模型。
二分类的线性分类模型,也是判别模型。 目的是求出把训练数据进行线性划分的分离超平面。 感知机是神经网络和支持向量机的基础。 学习策略:极小化损失函数。损失函数对应于误分类点到分离超平面的总距离。 基于随机梯度下降法对损失函数的最优化算法,有原始形式和对偶形式。
这是在《统计学习方法》中学习到的最后一个方法了,不像其他统计方法,学完精气神超足,都能让我继续振奋好几日。然学完该方法,我陷入了沉思与迷茫。首先,对条件随机场的【提出】和【应用场景】一片混沌,其次,说说它的思想吧,无非加入了【空间属性】,相比最大熵模型,多加入了【边特征函数】,而随机变量【X,Y】的联合概率分布的表达式并没有发生本质变化,所以说,它还是一个我认为的【概率模型】。既然是【概率模型】,那么它依旧可以用【对数似然函数】进行迭代求解,事实也是这样做的。但我所不解的是为何概率表达式清一色的表示为exp和规范化因子呢?难道仅仅因为exp在求导和概率计算中有很好的性质么?
首先考虑模型应满足的条件,给定训练数据集,可确定联合分布P(X,Y)的经验分布和边缘分布P(X)的经验分布
问耕 编译自 BAIR Blog 量子位 出品 | 公众号 QbitAI 来自加州大学伯克利分校的博士生唐浩然(Haoran Tang)和Tuomas Haarnoja今天发表博客文章,介绍了他们的一项新研究。原标题《通过最大熵深度强化学习掌握不同的技能》,以下是文章的主要内容。 标准的深度强化学习,旨在掌握单一方法来解决给定的任务。但只有一种解决方案是不够的,因为智能体很容易受到现实世界中常见环境变化的影响。 例如,一个在简单迷宫中寻找目标的机器人,在训练的时候,智能体学会了从上部通道找到目标的方法,因为
极大似然估计是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。极大似然原理的直观想法我们用下面例子说明。设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。一般说来,事件A发生的概率与某一未知参数 \theta 有关, \theta 取值不同,则事件A发生的概率P(A|\theta )也不同,当我们在一次试验中事件A发生了,则认为此时的\theta 值应是t的一切可能取值中使P(A|\theta )达到最大的那一个,极大似然估计法就是要选取这样的t值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
假设某市流行一种病,发病率是0.1% 。在某地的医院中有一个神医,特别擅长诊断该病。神医做出正确判断的概率是99%。(神医并不清楚发病率,做出正确判断的概率实在实验室得出来的。对于检查是否患病的人,他的正确率不变。)有一次你去看病,神医诊断说你有这个病。请问你真正有这个病的概率是多少?
,其中y 代表的是样本视为正样本的可能性,则 1-y 为视为负样本的可能性。
教程地址:http://www.showmeai.tech/tutorials/83
【第1章】 统计学习方法概论 【第2章】 感知机 【第3章】 k 近邻法 【第4章】 朴素贝叶斯法 【第5章】 决策树 【第6章】 逻辑斯谛回归与最大熵模型 【第7章】 支持向量机 【第8章】 提升方法 【第9章】 EM算法及其推广 【第10章】 隐马尔科夫模型 【第11章】 条件随机场 【第12章】 统计学习方法总结
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/78774972
深度强化学习(Deep reinforcement learning)在许多任务中都能获得成功。标准深度强化学习算法的目标是掌握一种解决给定任务的单一方法。因此,训练对环境中的随机性、策略的初始化和算
关于这个问题我今天正好看到了这个文章(http://t.cn/RJrTSLV)。讲的正是各个算法的优劣分析,很中肯。 正好14年的时候有人做过一个实验[1],比较在不同数据集上(121个),不同的分类
Logistic Regression 是一个非常经典的算法,其中也包含了非常多的细节,曾看到一句话:如果面试官问你熟悉哪个机器学习模型,可以说 SVM,但千万别说 LR,因为细节真的太多了。
binomial logistic regression model 是一种分类模型,由条件概率分布
在本教程中,我们将讨论最大熵文本分类器,也称为MaxEnt分类器。最大熵分类器是自然语言处理,语音和信息检索问题中常用的判别分类器。使用像JAVA,C++或PHP这样的标准编程语言实现最大熵分类器都可以,但是,为了估计模型的权重,必需解决数值优化问题。
当我们想要得到一个随机事件的概率分布时,如果没有足够的信息来完全确定其概率分布,那么最为保险的方法就是选择一个使得熵最大的分布。
一.有趣的熵 二.熵的表示 三.最大熵模型
本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来解释条件随机场。并且用水浒传为例学习。并且从名著中找了具体应用场景来帮助大家深入这个概念。
在介绍马尔可夫模型之前,先简单介绍下马尔可夫过程。马尔可夫过程是满足无后效性的随机过程。假设在一个随机过程中,
作者 王千发 编辑 李文臣 一.有趣的熵 二.熵的表示 三.最大熵模型 参考: 1.李航老师《统计机器学习》 2.吴军《数学之美》 3.阮一峰《熵,宇宙的终极规则》 4. http://spaces
MIT出版社出版的《机器学习基础》(第二版)PDF和HTML资源均已免费开放下载。距离第一版出版已有6年之久。
依存句法分析,法国语言学家L.Tesniere1959年提出。句法,句子规则,句子成分组织规则。依存句法,成分间依赖关系。依赖,没有A,B存在错误。语义,句子含义。
概率图模型(Probabilistic Graphical Model,PGM),简称图模型(Graphical Model,GM),是指一种用图结构来描述多元随机变量之间条件独立关系的概 率模型,从而给研究高维空间中的概率模型带来了很大的便捷性。它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量之间的概率关系,即“变量关系图”。
领取专属 10元无门槛券
手把手带您无忧上云