给定K个整数组成的序列{ N 1 , N2 , …, NK },“连续子列”被定义为{ Ni , Ni+1 , …, Nj },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
给定K个整数组成的序列{ N 1 , N 2 , …, N K },“连续子列”被定义为{ N i , N i+1 , …, N j },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
Leetcode第121题到123题连续出现了三道买卖股票相关的题目,一年前的网易笔试和半年前的百度面试都遇到过121题,不过不用慌,看完本文,你一定能够完美解决买卖股票的问题。那么我们由易到难,依次介绍这三道题目。
Leetcode第121题到123题连续出现了三道买卖股票相关的题目,一年前的网易笔试和半年前的百度面试都遇到过121题,不过不用慌,看完本文,你一定能够完美解决买卖股票的问题。那么我们由易到难,依次
类别分细,查找方便,但管理麻烦,同样,类别分粗一点,查找麻烦,管理方便 所以综上所述, 数据结构的组织方式决定了方式的效率
在线算法是指它可以以序列化的方式一个个的处理输入,也就是说在开始时并不需要已经知道所有的输入。
在 AI 对齐问题上,在线方法似乎总是优于离线方法,但为什么会这样呢?近日,Google DeepMind 一篇论文试图通过基于假设验证的实证研究给出解答。
在我们的生活中,例如股票市场的即时交易分析,还有导航路径的实时规划,都有在线算法的身影。
摘要:我们扩展了标准的在线最坏情况模型,以适应过去在许多实际场景中可供在线玩家使用的体验。我们通过提前向在线玩家展示对抗性输入的随机样本来做到这一点。在线播放器与在线到达的输入部分的预期最佳值竞争。我们的模型在现有的在线随机模型(例如,从分布中i.i.d中绘制的项目)和在线最坏情况模型之间架起桥梁。我们也以类似的方式(通过揭示样本)扩展在线随机顺序模型。
阿波罗社区已经为自动驾驶汽车构建了基于机器学习的自动校准系统。到2018年8月,该系统已经过两千多小时的测试,进行了大约一万公里(6213英里)的道路测试,并且已被证明是有效的。该系统是自动化和智能化的,因此适用于大规模自动驾驶车辆部署。
今天来讨论一个很基础的算法问题,数列的最大子列和问题。这道题我是在看浙大陈姥姥的Mooc的时候看到的,算是陈越老师作为算法与数据结构开篇讲解的第一道算法实例题。
———————————————— 版权声明:本文为博主「Sofar」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://sofar1994.github.io/post/19111/
paper:A normative framework for deriving neural networks with multi-compartmental neurons and non-Hebbian plasticity
作者:Evripidis Bampis,Dimitris Christou,Bruno Escoffier,Nguyen Kim Thang
数组分为Left与Right部分,最大字段和要么在left,要么在right,要么必然包括mid-1与mid+1(这种情况复杂度仅为n,此处mid不代指元素,mid-1与mid+1相邻),籍此可以递归求解。
摘要:确保语言模型的输出与人类偏好相一致,对于保证有用、安全和愉快的用户体验至关重要。因此,近来人们对人类对齐问题进行了广泛研究,并出现了一些方法,如人类反馈强化学习(RLHF)、直接策略优化(DPO)和序列似然校准(SLiC)。在本文中,我们有两方面的贡献。首先,我们展示了最近出现的两种配准方法,即身份策略优化(IPO)和纳什镜像下降(Nash-MD)之间的等价性。其次,我们引入了 IPO 的概括,命名为 IPO-MD,它利用了 Nash-MD 提出的正则化采样方法。这种等价性乍看起来可能令人惊讶,因为 IPO 是一种离线方法,而 Nash-MD 是一种使用偏好模型的在线方法。然而,如果我们考虑 IPO 的在线版本,即两代人都由在线策略采样并由训练有素的偏好模型注释,就可以证明这种等价性。利用这样的数据流优化 IPO 损失,就等同于通过自我博弈找到偏好模型的纳什均衡。基于这种等效性,我们引入了 IPO-MD 算法,该算法与一般的纳什-MD 算法类似,使用混合策略(介于在线策略和参考策略之间)生成数据。我们将在线 IPO 和 IPO-MD 与现有偏好数据损失的不同在线版本(如 DPO 和 SLiC)在总结任务上进行了比较。
作为最久负盛名的机器学习顶会之一,今年 NeurIPS 2019 在召开之前就消息不断:在今年论文审稿期间,NeurIPS 2019 程序委员会主席专门发布声明称,19 篇论文因一稿多投被拒收,一时造成热议;而在会议近一个月前,多位黑人参会者们申请加拿大签证被拒的消息引起了AI学者们纷纷为其发声并对近年来签证问题的讨论展开了激烈讨论,为本次大会的召开埋下了一丝令人忧心的伏笔。
现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的FTRL(Follow-the-regularized-Leader)算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控制和稀疏化)的凸优化问题上性能非常出色,据闻国内各大互联网公司都第一时间应用到了实际产品中,我们的系统也使用了该算法。这里对FTR
AI 科技评论消息,众所周知,谷歌的研究团队遍布世界各地,而纽约自然也是非常重要的一个地点,尤其是多个谷歌算法研究小组的孕育地。目前,谷歌算法优化团队为谷歌产品的顺利诞生提供了非常多的算法支持,解决了诸多挑战,包括基础优化、隐私保护、提升好友推荐度等多重挑战。 为了让大家更能第一时间了解到谷歌算法及优化的最新进展,谷歌研究院博客于今天更新了消息,谷歌 NYC 算法优化团队公布了主页。而从这个主页中,AI 科技评论也将和大家一窥谷歌算法优化团队的全貌。 目前,团队与谷歌内部的多个团队有着紧密联系,包括广告
本书在介绍算法时,重点介绍用干设计算法的策略.非常与众不同。书中介绍了剪枝搜索、分摊分析、随机算法、在线算法以及多项式近似方案等相对较新的思想和众多基于分摊分析新开发的算法,每个算法都与实例一起加以介绍,而且每个例子都利用图进行详细解释。此外,本书还提供了超过400幅图来帮助初学者理解。本书适合作为高等院校算法设计与分析课程的高年级本科生和低年级研究生的教材,也可供相美科技人员和专业人七参考使用。
备受瞩目的NeurlPS 2019周日一早在温哥华拉开序幕,今天,组委会通过一篇博客公布了包括杰出论文奖、杰出新方向论文奖等五大类奖项。
总篇链接:https://laoshifu.blog.csdn.net/article/details/134906408
欢迎来到脑机接口综合性开源软件平台MetaBCI的发布会现场,我是来自天津大学的许敏鹏。
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 进阶: 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
之前我们讨论的学习都是「批量学习」(batch learning)。批量学习的特点是我们会基于一个训练集进行学习,然后在独立的测试数据上评估学习得到的假设
最大子数组问题是一种经典的算法问题,可以使用非递归的方法来解决。具体来说,我们可以使用一个队列来存储当前已经处理过的最大子数组,并且维护一个变量 max_len 来记录当前最大子数组的长度。同时,我们可以遍历整个数组,记录当前已经处理过的最大子数组的长度,并且在遍历的过程中更新 max_len。
插入排序(Insertion Sort)是一种基于比较的排序算法。它的基本思想是将元素逐个插入到已排序的部分中,使整个序列保持有序。插入排序在处理小数据集或几乎已经有序的数据集时,效率较高。
以前写过一个“自动驾驶中的目标跟踪”介绍,这次重点放在深度学习和摄像头数据方面吧。
导读:笔者在学习数据结构经典问题“四种方法求解最大子列和”时,遇到了一个需求:计时是重复动作,因此想创建一个可以为算法运行时间计时的函数。由于计时的特殊性(被计时的函数要被掐头又掐尾),因此要设计一个能调用函数的函数。这就涉及到 回调函数 / 函数指针 的应用了(初学C/C++时,不了解回调函数提出的意义,现在因为自己的需求明白了)。
来源:专知本文为书籍介绍,建议阅读5分钟本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。 在有关算法的书中,有一些叙述非常严谨,但不够全面;另一些涉及了大量的题材,但又缺乏严谨性。《算法导论(原书第4版)/计算机科学丛书》将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。全书各章自成体系,可以作为独立的学习单元;算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和
写在前面 深度学习如火如荼,作为一个IT技术人员,不搞一下深度学习,总有一种活在上个世纪的感觉,因此笔者准备认认真真的搞一下深度学习,努力跟上时代的步伐。话说基础不牢,地动山摇,如果没有机器学习的基础知识,要想学好深度学习,还是有一定的挑战的。所以接下来的一段时间,笔者会每周在微信公众号“智能算法”更新一篇深度学习相关文章。该系列大致分两部分:机器学习的基础和神经网络深度学习。总体来讲,笔者的初衷是通过这个系列文章,使自己和大家能基本了解以及能够应用相关知识在自己的领域中能解决一定的实际问题。如果感兴趣,欢
给定KK个整数组成的序列{ N_1N 1 , N_2N 2 , …, N_KN K },“连续子列”被定义为{ N_iN i , N_{i+1}N i+1 , …, N_jN j },其中 1 \le i \le j \le K1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
我们已经知道求最大子段和的dp算法 参考 here 也可参考编程之美有关最大子矩阵和部分。
南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比较,计算出两个人的杀敌数差值,用这种方法一方面能鼓舞杀敌数高的人,另一方面也算是批评杀敌数低的人,起到了很好的效果。
假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归。训练分类器就是为了寻找最佳拟合参数,使用的是最优化算法。 这就是简单的线性回归问题,可以通过最小二乘法求解其参数,最小二乘法和最大似然估计。 但是当有一类情况如判断邮件是否为垃圾邮件或者判断患者癌细胞为恶性的还是良性的,这就属于分类问题了,是线性回归所无法解决的。这里以线性回归为基础,讲解logistic回归用于解决此类分类问题。 python代码的实现 (1) 使用梯度上升找到最佳参数 from num
给定一个二维整数矩阵,要在这个矩阵中 选出一个子矩阵,使得这个子矩阵内所有的数字和尽量大 我们把这个子矩阵成为“和最大子矩阵”,子矩阵的选取原则,是原矩阵中一段相互连续的矩形区域。
炒股的人都知道,股票的价格是不稳定的。若想从炒股中赚钱,必须“低买高卖”,就是低价买进,高价卖出,赚取中间差价。那么给定一段时间,每一天都对应着不同的股价,如何确定哪天买进,哪天卖出可以获得最大收益呢?
分治算法(divide and conquer)是五大常用算法(分治算法、动态规划算法、贪心算法、回溯法、分治界限法)之一,很多人在平时学习中可能只是知道分治算法,但是可能并没有系统的学习分治算法,本篇就带你较为全面的去认识和了解分治算法。
1.动态规划 这题是让求最大的连续子序和,如果不是连续的非常简单,只需要把所有的正数相加即可。但这里说的是连续的,中间可能掺杂负数,如果求出一个最大子序和在加上负数肯定要比原来小了。解这题最简单的一种方式就是使用动态规划。 我们先来了解一下动态规划的几个步骤: 1,确定状态 2,找到转移公式 3,确定初始条件以及边界条件 4,计算结果。 最后一个不用看,只看前3个就行,因为前3个一旦确定,最后一个结果也就出来了。我们试着找一下 1,定义dp[i]表示数组中前i+1(注意这里的i是从0开始的)个元
编者按:《国家科学评论》于2018年1月发表“机器学习”特别专题,由周志华教授组织并撰写文章。专题内容还包括对AAAI前主席Tom Dietterich的访谈,徐宗本院士、杨强教授、朱军博士、李航博士、张坤博士和Bernhard Scholkopf等人的精彩文章。
这篇文章由Databricks的Feynman Liang和Joseph Bradley,以及Intel的Yuhao Yang撰写。 在使用LDA之前,请先 下载Spark 1.5或是 申请试用版的Databricks。 人们正在推特上讨论什么呢?为了关注分布式计算,我该阅读哪些资讯文章呢?这些问题都能够被话题模型所解答,它是分析文档集所涵盖话题类别的一种技术。本文将要讨论Spark 1.4和1.5使用强大的隐含狄利克雷分布 (Latent Dirichlet Allocation,LDA)算法对话题模型的
算法一:穷举式地尝试所有的可能 int maxSubsequenceSum(const int a[], int n) { int i, j, k; int thisSum, maxSum = 0; for (i = 0; i < n; i++) for (j = i; j < n; j++) { thisSum = 0; for (k = i; k < j; k++)
算法一:穷举式地尝试所有的可能 int maxSubsequenceSum(const int a[], int n) { int i, j, k; int thisSum, maxSum = 0; for (i = 0; i < n; i++) for (j = i; j < n; j++) { thisSum = 0; for (k = i; k < j; k++) t
Jupyter作为开源的项目,可以基于Jupyter二次开发在线算法webIDE。建议基于插件的方式改造Jupyter代码,这样也方便升级。
领取专属 10元无门槛券
手把手带您无忧上云