数学上,最大似然估计可以通过最大化似然函数 ( L(\theta) = P(X; \theta) ) 来实现。...引入修正函数:在最大似然估计中引入修正函数 ()gm(t),以纠正偏差。这种方法可以通过修正后的最大似然估计表达式来实现。...具体步骤包括: 推导似然函数:首先需要推导出时间序列数据的概率密度函数或概率质量函数。 最大化似然函数:通过选择合适的优化算法(如牛顿-拉夫森法、梯度上升法等),求解使得似然函数最大化的参数值。...具体的计算过程如下: 定义似然函数:假设误差项遵循正态分布,可以推导出多重线性回归模型的似然函数。 求解参数:使用等式和矩阵运算来求解似然函数的最大值对应的参数值。...最大似然估计(MLE)是一种通过最大化似然函数来找到参数值的方法,广泛应用于统计模型和机器学习中。在实际应用中,为了求解最大似然估计问题,通常需要使用数值优化算法。
全文字数:2771字 阅读时间:7分钟 前言 似然函数以及最大似然函数在机器学习中是一个比较重要的知识点。...本文从什么是似然函数以及似然函数的定义引入最大似然函数,最后通过简单的抛硬币例子来更加具体的说明。 a 什 么 是 似 然 函 数 ?...c 最 大 似 然 函 数 估 计 其实最大似然估计是似然函数最初也是最自然的应用。上文已经提到,似然函数取得最大值表示相应的参数能够使得统计模型最为合理。...从这样一个想法出发,最大似然估计的做法是:首先选取似然函数(一般是概率密度函数或概率质量函数),整理之后求最大值。...实际应用中一般会取似然函数的对数作为求最大值的函数,这样求出的最大值和直接求最大值得到的结果是相同的。似然函数的最大值不一定唯一,也不一定存在。
其实我们常用的 softmax 交叉熵损失函数,和 最大似然估计是等价的。...首先来看 softmax 交叉熵目标函数是什么样子的: 对于N个样本 [图片] j: 第 n 个样本属于 第 j 类, f 代表神经网络。 如果用最大似然估计呢?...即:最大化已出现的样本的概率 [图片] 最大化上式等价于最小化 负的上式,所以和 softmax 交叉熵是等价的。 所以,softmax 交叉熵也是想 最大化 已出现样本的概率。
什么是EM算法 1.1 似然函数 1.3 极大似然函数的求解步骤 1.4 EM算法 2. 采用 EM 算法求解的模型有哪些? 3.代码实现 4. 参考文献 1....最大期望算法经过两个步骤交替进行计算, 第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值; 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。...极大似然估计用一句话概括就是:知道结果,反推条件θ。 1.1 似然函数 在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。...这个例子所作的推断就体现了最大似然法的基本思想。 多数情况下我们是根据已知条件来推算结果,而最大似然估计是已经知道了结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。...求极大似然函数估计值的一般步骤: 写出似然函数; 对似然函数取对数,并整理; 求导数,令导数为0,得到似然方程; 解似然方程,得到的参数即为所求; 1.4 EM算法 两枚硬币A和B,假定随机抛掷后正面朝上概率分别为
如果我们将这些值插入上面的方程式中,让 变化,我们得到图1a的分布图。 图1:a)二项式模型的概率质量函数;b)二项式似然函数,点表示不同参数值的似然性。...似然函数(Likelihood Function):数据已知,评估参数。 2. 最大似然估计 前面,我们了解了概率和似然之间的区别。...这就需要通过最大似然估计(MLE)得出。 2.1 什么是最大似然估计? 最大似然估计是一种使用观测数据来估计未知参数的方法。...也就是,我们想要找到存在于参数空间(用大写希腊字母 表示)中的唯一参数集(用小写希腊字母 表示)的最大化似然函数。 似然函数本身定义为: 右侧的项是概率质量函数。...此外,如果存在解(存在一个参数使得对数似然函数最大化),那么它必须满足以下偏微分方程: 这被称为似然方程。 对于最大似然估计,我们通常期望对数似然是一个可微分的连续函数。
最大似然函数 source coding # -*- coding:utf-8 -*- # /usr/bin/python ''' @Author: Yan Errol @Email:2681506
极大似然估计 最大似然估计是深度学习模型中常用的训练过程。目标是在给定一些数据的情况下,估计概率分布的参数。简单来说,我们想要最大化我们在某个假设的统计模型下观察到的数据的概率,即概率分布。...这意味着想要找到似然函数的最大值,这可以借助微积分来实现。函数的一阶导数对参数的零点应该足以帮助我们找到原函数的最大值。 但是,将许多小概率相乘在数值上是不稳定的。...最大化我们数据的概率可以写成: 上面的表达式可以被求导以找到最大值。展开参数有log((|,))。由于它是两个变量和的函数,使用偏导数来找到最大似然估计。...我们已经看到了我们想要达到的目标最大化似然函数的对数变换。但是在深度学习中,通常需要最小化损失函数,所以直接将似然函数的符号改为负。...,计算了参数的最大似然估计。
最大似然估计是建立在最大似然原理的基础之上。最大似然原理的直观理解是:设一个随机试验有若干个可能的结果 A1,A2,...,An A_1,A_2,......3.最大似然估计 设 L(θ)=∏i=1np(xi,θ) L(\theta)=\prod_{i=1}^np(x_i,\theta)为参数 θ \theta的似然函数,若存在一个只与样本观察值...由上可知,所谓最大似然估计是指通过求似然函数 L(θ) L(\theta)的最大(或极大)值点来估计参数 θ \theta的一种方法。...另外,最大似然估计对总体中未知参数的个数没有要求,可以求一个未知参数的最大似然估计,也可以一次求多个未知参数的最大似然估计,这个通过对多个未知参数求偏导来实现,因为多变量极值就是偏导运算。...需要注意的是,似然函数 L(θ) L(\theta)不一定有极大值点,但是未必没有最大值点,所以对于有些问题,求导求极大值可能会失效,这时需要考虑边界点。
逻辑回归原理 逻辑回归实际上是使用线性回归模型的预测值去逼近真实标记的对数函数。 逻辑回归虽然名字叫回归,但实际确实一种分类算法。...直接对分类的可能性建模,无需实现假设数据分布,从而避免了假设分布不准确带来的问题(区别于生成式模型); 不仅可预测出类别,还能得到该预测的概率,这对一些利用概率辅助决策的任务很有用; 对数函数是任意阶可导的凸函数...最大化似然函数和最小化损失函数 经过一系列数学推导和证明,可知在逻辑回归模型中,最大化似然函数和最小化损失函数实际上是等价的,经典的数值优化算法,例如梯度下降和牛顿法,都可以求得其最优解。...逻辑回归和多重线性回归的区别 Logistic回归与多重线性回归实际上有很多相同之处 最大的区别就在于它们的因变量不同,其他的基本都差不多。...Regression 常规步骤 寻找h函数(即预测函数) 构造J函数(损失函数) 想办法使得J函数最小并求得回归参数(θ)
通过最大化似然函数,找到了最可能的解。 理解似然函数 顾名思义,最大似然估计是通过最大化似然函数来计算的。(从技术上讲,这不是找到它的唯一方法,但这是最直接的方法)。...如何最大化似然函数 现在可以用数学方式表达给定分布的似然函数,但看起来它是一个需要最大化甚至求导数的函数。那么如何有效地最大化似然函数呢?...取它的对数 虽然似然函数通常难以在数学上最大化,但似然函数的对数通常更容易处理。我们这样做的理论基础是:最大化对数似然的值 θ 也最大化似然函数。...分布中的λ参数的最大似然估计是什么? 总结一下,计算MLE的步骤如下: 求似然函数 计算对数似然函数 最大化对数似然函数 首先,我们已经建立了似然函数为 为了计算对数似然,我们取上述函数的对数。...估计值是通过最大化数据来自的分布的对数似然函数来计算的。本文解释了 MLE 的工作原理和方式,以及它与 MAP 等类似方法的不同之处。还解释了似然函数的定义以及如何推导它。
文章目录 百度百科版本 最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。...“似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。...最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。...然后,根据定义,概率总和最大的那棵树最有可能是反映真实情况的系统发生树。 查看详情 维基百科版本 在统计学中,最大似然估计(MLE)是一种在给定观察的情况下估计统计模型的参数的方法。...在给定观察结果的情况下,MLE尝试找到使似然函数最大化的参数值。得到的估计称为最大似然估计,其也缩写为MLE。 最大似然法用于广泛的统计分析。
如何写出似然函数,如何使用R语言编程实现: 正态分布数据似然函数 线性回归似然函数 用R语言自带的函数计算极值 1. 正态分布 1.1 正态分布函数 ? ? 2....正态分布似然函数推断 2.1 正态密度函数 ? 2.2 联合密度的似然函数 当n个观测值相互独立,他们的似然函数(等价于联合密度函数)为: ?...2.3 正态分布似然函数 对似然函数,两边求自然对数: ? 进一步简化: ?...极大似然函数和最小二乘法的关系 对上面的似然函数求偏导 ? 得到的结果和最小二乘法结果一致: ? 7....使用最大似然法求解问题的步骤为 一、确定问题的随机变量类型是离散随机变量还是连续随机变量 二、得出问题的概率分布 三、概率函数转为似然函数 四、似然函数取对数 五、求关于某变量的偏导数 六、解似然方程
回到抛硬币的例子,出现实验结果X的似然函数是什么呢?...而最大似然估计,很明显是要最大化这个函数。可以看一下这个函数的图像: 容易得出,在 θ = 0.7 \theta=0.7 θ=0.7时,似然函数能取到最大值。...5.最大后验估计(maximum a posteriori estimation) 上面的最大似然估计MLE其实就是求一组能够使似然函数最大的参数,即 θ ^ M L ( x ) = arg max...在这一情况中,所有权重分配到似然函数,因此当我们把先验与似然相乘,由此得到的后验极其类似于似然。因此,最大似然方法可被看作一种特殊的 MAP。...随着数据的增加,先验的作用越来越弱,数据的作用越来越强,参数的分布会向着最大似然估计靠拢。而且可以证明,最大后验估计的结果是先验和最大似然估计的凸组合。
通过最大化似然函数,找到了最可能的解。 理解似然函数 顾名思义,最大似然估计是通过最大化似然函数来计算的。(从技术上讲,这不是找到它的唯一方法,但这是最直接的方法)。...如何最大化似然函数 现在可以用数学方式表达给定分布的似然函数,但看起来它是一个需要最大化甚至求导数的函数。那么如何有效地最大化似然函数呢?...取它的对数 虽然似然函数通常难以在数学上最大化,但似然函数的对数通常更容易处理。我们这样做的理论基础是:最大化对数似然的值 θ 也最大化似然函数。...分布中的λ参数的最大似然估计是什么? 总结一下,计算MLE的步骤如下: 求似然函数; 计算对数似然函数; 最大化对数似然函数。...首先,我们已经建立了似然函数为: 为了计算对数似然,我们取上述函数的对数。可以通过以下步骤推导: 最后,我们最大化对数似然和简化,就得到最大似然λ。
这一次,我们探讨哪些准则可以帮助我们从不同的模型中得到特定函数作为好的估计。其中,最常用的准则就是极大似然估计(maximum likelihood estimation,MLE)。...求解的一般步骤 (1) 写出似然函数; (2) 对似然函数取对数,并整理; (3) 求导数 ; (4) 解似然方程 。...它与Fisher的最大似然估计方法相近,不同的是它扩充了优化的目标函数,其中融合了预估计量的先验分布信息,所以最大后验估计可以看作是正则化(regularized)的最大似然估计。)被定义为 ?...因为一致性和统计效率的原因,最大似然估计通常是机器学习中的首选估计方法。...当训练样本数量很少,以至于会产生过拟合时,正则化策略如权重衰减可用于获得训练样本的有限方差较小的最大似然估计(该估计是有偏的)。
https://blog.csdn.net/haluoluo211/article/details/78776283 机器学习EM算法以及逻辑回归算法模型参数的求解都用到了最大似然估计,本文讲解其原理...极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值!...换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。 最大似然估计通常是将目标函数转化为对数的形式,大大的简化了参数求解的运算。 ? ? ? ?
一、最大似然 扯了太多,得入正题了。假设我们遇到的是下面这样的问题: ? ? 这里出现了一个概念,似然函数。还记得我们的目标吗?我们需要在已经抽到这一组样本X的条件下,估计参数θ的值。怎么估计呢?...在学校那么男生中,我一抽就抽到这100个男生(表示身高),而不是其他人,那是不是表示在整个学校中,这100个人(的身高)出现的概率最大啊。那么这个概率怎么表示?哦,就是上面那个似然函数L(θ)。...所以,我们就只需要找到一个参数θ,其对应的似然函数L(θ)最大,也就是说抽到这100个男生(的身高)概率最大。这个叫做θ的最大似然估计量,记为: ?...当然是求L(θ)对所有参数的偏导数,也就是梯度了,那么n个未知的参数,就有n个方程,方程组的解就是似然函数的极值点了,当然就得到这n个参数了。 最大似然估计你可以把它看作是一个反推。...求最大似然函数估计值的一般步骤: (1)写出似然函数; (2)对似然函数取对数,并整理; (3)求导数,令导数为0,得到似然方程; (4)解似然方程,得到的参数即为所求; 二、EM算法 ?
MLE MAP 最大后验概率 wiki 机器学习基础篇——最大后验概率 MLE: 首先看机器学习基础篇——最大后验概率关于离散分布的举例(就是樱桃/柠檬饼干问题) 可见,MLE是在各种概率中,找出使发生事实概率最大的那个概率...比如那篇博文的例子,你要找到哪个袋子会使得拿到两个柠檬饼干的概率最大。根据如下公式,你要找到一个p,使得p^2最大。 ?...我们要找到一个包裹,使得上面的公式值最大。 p的取值分别为0%,25%,50%,75%,1 g的取值分别为0.1, 0.2, 0.4, 0.2, 0.1....我们的目标是,让上面的公式值最大。由于上式分母与θ无关,就只要让分子的值最大即可。: ?
它是θ的函数,L(θ)称为样本的似然函数。 由极大似然估计法:x1,...,xn;挑选使概率L(x1,...,xn;θ)达到最大的参数,作为θ的估计值即取 ? 使得 ? &\hatθ与x1,......的最大值,这里L(θ)称为样本的似然函数,若 ? 则称 ? 为θ的最大似然估计值,称 ?...为θ的最大似然估计值 一般,p(x;θ),f(x;θ)关于θ可微,故θ可由下式求得 ? 又因L与lnL在同一θ处取到极值,因此最大似然估计θ也可从下述方程解得: ?...解k个方程组求的θ的最大似然估计值 小结:最大似然估计法的一般步骤: **写似然函数L ** ?...,xn)为样本观察值,求\lamda的最大似然估计值 解:总体X的概率密度函数为: ? ? 设总体X分布律为: ? 求参数p的最大似然估计量 ?
图片来自网站 频率学派 - Frequentist - Maximum Likelihood Estimation (MLE,最大似然估计) 贝叶斯学派 - Bayesian - Maximum A Posteriori...,对参数 $\theta$ 进行估计,此便是极大似然估计的核心思想。...最大似然估计 Maximum Likelihood Estimation, MLE是频率学派常用的估计方法。...theta\right) \\ &=\arg \min -\sum_{i=1}^{n} \log P\left(x_{i} ; \theta\right) \end{aligned} 最后这一行所优化的函数被称为...贝叶斯派衍生出来的是概率图模型,最终转换为一个积分问题。
领取专属 10元无门槛券
手把手带您无忧上云