数学家们喜欢各种类型的有奇怪特性的数。例如,他们认为945是一个有趣的数,因为它是第一个所有约数之和大于本身的奇数。
时间复杂度:最坏情况他们的最大公约数是1,循环做了t-1次,最好情况是只做了1次,可以得出O(n)=n/2;
程序员都想挑战这四道算法趣题!通过挑战你也可以看到自己大体处于哪个级别。 在挑战之前,先介绍下问题的具体形式: 每个问题大致分为“问题”和“详解”两部分。 请各位先通读问题描述,并动手编写程序尝试解题。在这个过程中,具体的实现方法是其次,更重要的是思考“通过哪些步骤来实现才能够解决问题”。 每个问题都有思路讲解和源代码示例。请留意自己编程时在处理速度、可读性等方面进行的优化,和本文的源代码示例有什么不同。如果事先看了思路讲解和答案,就会失去解题的乐趣,所以这里建议大家先编程解题,再看讲解。 为了大家更好的享
-欢迎 这篇文章讨论了数论中每个程序员都应该知道的几个重要概念。本文的内容既不是对数论的入门介绍,也不是针对数论中任何特定算法的讨论,而只是想要做为数论的一篇参考。如果读者想要获取关于数论的更多细节,文中也提供了一些外部的参考文献(大多数来自于 Wikipedia 和 Wolfram )。 0、皮亚诺公理 整个算术规则都是建立在 5 个基本公理基础之上的,这 5 个基本公理被称为皮亚诺公理。皮亚诺公理定义了自然数所具有的特性,具体如下: (1)0是自然数; (2)每个自然数都有一个后续自然数; (3)0不是
此处所谓求逆运算,是指在模乘群里求逆。 第一节里提到互质的两个定义: (1)p,q两整数互质指p,q的最大公约数为1。 (2)p.q两整数互质指存在整数a,b,使得ap+bq=1。 只要明白了欧几里得算法,很容易就可以求出两整数的最大公约数,而这是一个小学时候就学习到的算法。这个算法有个可能让我们更熟悉的名字,叫辗转相除法。 我经常搞不清楚被除数和除数,不知道会不会有人和我一样。所以我要先在这里写明一下,防止混淆,一个除法,除号前的叫被除数,除号后的脚除数。 单次除法,X=m*Y
辗转相除法又名欧几里得算法,是求最大公约数的一种算法,英文缩写是gcd。所以如果你在大牛的代码或者是书上看到gcd,要注意,这不是某某党,而是指的辗转相除法。
iTesting,爱测试,爱分享 沉寂了一段时间,继续学习。 算法这个系列我想分享很久了,奈何本身对算法不是特别了解,又找不到合适的载体来分享。 最近看了本有趣的算法书, 文中通过图文并茂的讲解给我很大启发,尝试着分享下。需要注意的是, 文中各个算法的写法不是简单的拷贝,算理解思想后拿Python3重新写了遍,分享的代码和书中的例子也稍有不同,加了些日常工作中会做的处理,如有不适,请联系我。 二分查找 --仅当列表是有序的时候才能用 思想: 1.目标是找数组中的某一个元素,暂叫item 2.找出整个数组中间
给你一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点。求最多有多少个点在同一条直线上。
不知道大家参加了上周日的LeetCode周赛没有,发生了一件活久见的事,LeetCode官网居然挂了,不仅是中国区挂了,而是全站都挂了,国际服的竞赛也进不去了……过了好久才恢复。
最近看了《Java编程那些事》博客专栏,在讲到Java流程控制那块,提到了很多自己当初学习过程中涉及到的小算法,都很经典,以后会不断的将接触到的算法更新到本博文中,供自己以后查看,也可以作为大家学习
本次的题目正确率可是低到了一个境界呢!快来试试吧! 题目描述 正整数x 的约数是能整除x 的正整数。正整数x 的约数个数记为div(x)。例如,1,2, 5,10 都是正整数10 的约数,且div(10)=4。设a 和b 是2 个正整数,a≤b,找出a 和b 之间约数个数最多的数x 输入 输入2 个正整数a≤b,编程计算a 和b 之间约数个数最多的数。 输出 程序运行结束时,找到a 和b 之间约数个数最多的数是x,将div(x)输出 样例输入 1 36 样例输出 9 PS:如果你有想法或者想
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说递归函数及例题_递归树求解递归式例题,希望能够帮助大家进步!!!
正排索引,也会写入磁盘文件中,然后呢,os cache先进行缓存,以提升访问doc value正排索引的性能
例如:1 ^ 1 = 0 、 2 ^ 2 = 0、 0 ^ 1 = 1 、1 ^ 1 ^ 2 ^ 3 ^ 2 ^ 4 ^ 3 = 4
本文为joshua317原创文章,转载请注明:转载自joshua317博客 https://www.joshua317.com/article/140
基本要求:1.程序风格良好(使用自定义注释模板),两种以上算法解决最大公约数问题,提供友好的输入输出。
前言 清明不小心就拖了两天没更了~~ 这是十道算法题的第二篇了~上一篇回顾:十道简单算法题 最近在回顾以前使用C写过的数据结构和算法的东西,发现自己的算法和数据结构是真的薄弱,现在用Java改写一下,重温一下。 只能说慢慢积累吧~下面的题目难度都是简单的,算法的大佬可直接忽略这篇文章了~入门或者算法薄弱的同学可参考一下~ 很多与排序相关的小算法(合并数组、获取数字每位值的和),我都没有写下来了,因为只要会了归并排序(合并数组),会了桶排序(获取数字每位的值),这些都不成问题了。如果还不太熟悉八大基础排序的同
短除法是求最大公因数的一种方法:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。
这么想你肯定是没有好好阅读前面章节中小傅哥讲到的RSA算法,对于与欧拉结果计算的互为质数的公钥e,其实就需要使用到辗转相除法来计算出最大公约数。
首先来回忆一下什么叫最大公约数:指两个或多个整数共有约数中最大的一个。比如60和24,60的约数有[1,2,3,4,5,6,10,12,15,20,30,60],24的约数有[1,2,3,4,6,8,12,24],他们共同的约数有[1,2,3,4,6,12],共同约数种最大的是12,所以最大公约数就是12。
利用辗转相除法、穷举法、更相减损术、Stein算法求出两个数的最大公约数或者/和最小公倍数。
一 写在开头 1.1 本节内容 本节主要内容为几种常见的两个数的最大公约数(Greatest Common Divisor)的求法。
最大公约数算法不是很无聊,计算最大公约数是数学中一个重要的概念,可以用于判断两个数是否互质、求分数的约分等,在很多领域都有广泛的应用。具体如下:
辗转相除法又称为欧几里德算法。这个方法大家已经都已经在数学上学过了。具体的步骤就是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。最后的除数就是这两个数的最大公约数。举个例子就是:比如两个数字,x=453,y=36;
小灰的思路十分简单。他使用暴力枚举的方法,试图寻找到一个合适的整数 i,看看这个整数能否被两个整型参数numberA和numberB同时整除。
通过收集分析参观者的行为数据,数据侠Belinda设计了一套简单的推荐系统,让一家老牌传统博物馆重新变得鲜活起来。你不用担心在参观时,会被博物馆卷帙浩繁的历史厚度压得喘不过气来,因为数据会为你精心推荐一条个性化的历史故事线,带你领略最有趣的历史片段。
在日常生活中,数通常出现在标记(如公路、电话和门牌号码)、序列号和编码上。在数学里,数的定义延伸至包含如分数、负数、无理数、超越数及复数等抽象化的概念。
欧几里得算法是用来求解两个不全为0的非负整数m和n的最大公约数的一个高效且简单的算法。该算法来自于欧几里得的《几何原本》。数学公式表达如下:
利用格式输入语句将输入的两个数分别赋给 a 和 b,然后判断 a 和 b 的关系,如果 a 小于 b,则利用中间变量 t 将其互换。再利用辗转相除法求出最大公约数,进而求出最小公倍数。最后用格式输出语句将其输出。
约数和质数一样在蓝桥杯考试中是在数论中考察频率较高的一种,在省赛考察的时候往往就是模板题,难度大一点会结合其他知识点考察,但是仍然会用到模板,这里有三大模板,第一个是试除法求约数个数,第二个是求约数个数,第三个是求约数的和(来自y总的三个模型)
1.【更相减损法】=【等值算法】,避免了取模运算,但是算法性能不稳定,最坏时间复杂度为O(max(a, b)))。
前言 金三银四,求职黄金月做算法面试题,热热身子。 正文 1.Chess For Three 题目链接 题目大意: 有三个人A,B,C玩剪刀石头布的游戏,但是每次只能两个人参与,于是他们三个人制定规则: 1、A和B先玩,C旁观; 2、游戏的胜者和旁观者继续游戏,败者旁观; 游戏按照这样的规则,重复继续。 他们把每次的胜负写在纸上,总共有n行;(1<=n<=100) 每行有一个数字a[i]; (1<=a[i]<=3,a[i]=1表示A胜,a[i]=2表示B胜,a[i]=3表示C胜) 现在根据这
for(z=0; z<10000000; z++) 循环只是为了增加程序的运行时间,让我们体会算法的时间复杂度。 算法一:短除法 想法,采用短除法找出2个数的所有公约数,将这些公因子相乘,结果就是2个数的最大公约数。【找公因子,只能使用蛮力法】 #include<stdio.h> #include<time.h> void main() { int m=28,n=72; int i,f=1; int z; clock_t start,finish; double duration; start=
测试题 0.递归在编程上的形式是如何表现的呢? 递归形式上就是在函数体里调用自身。如下所示:
最近去面试了,面了几家公司,深刻认识到一个道理,越是基础的问题越重要,越能考察一个人的技术功底与逻辑思维。比如我们接下来要说的求两个数的最大公约数的问题。这类简单的算法题目一般会出现在面试环节,面试官要求你当场手撕的那种。
辗转相除法,又被称为欧几里德(Euclidean)算法, 是求最大公约数的算法。 当然也可以求最小公倍数。
x & 1 == 1 or == 0其实是来判断奇数还是偶数,原理就是按照位“与”运算的原则,如果两个值相应的位置都为1也就是上下都为1的时候,那么该结果就是1,如果有一个不是1,那么就是0。
两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。比如10和25,25除以10商2余5,那么10和25的最大公约数,等同于10和5的最大公约数。
星巴克的杯子那么多,最受欢迎的究竟是哪一个?来自纽约数据科学院的Amy使用网络抓取了星巴克的3698款马克杯,通过数据可视化和K-means聚类算法,对全世界的星巴克爱好者们进行研究。
设有两整数a和b: ① a%b得余数c ② 若c==0,则b即为两数的最大公约数 ③ 若c!=0,则a=b,b=c,再回去执行①。
小学数学就学习了如何计算最大公约数(Greatest Common Factor,GCF)和最小公倍数(Lowest Common Multiple,LCM)。例如15和25的最大公约数是5,最小公倍数是75,数学老师会不厌其烦的用质数分解的方法讲解。那么,能不能用计算机来算?古希腊数学家欧几里得提出了最大公约数GCF的算法:
AI摘要:在数学中,最大公约数(GCD)是两个整数之间的一种重要关系,而贝祖等式则进一步揭示了GCD的深层次应用。本文通过深入浅出的方式,详细推导扩展欧几里得算法的公式,从欧几里得算法开始,一步步揭示其背后的数学原理,并最终实现计算GCD及其贝祖系数的Python代码。无论你是否具备高等数学背景,这篇文章将带你探索如何巧妙地利用扩展欧几里得算法解决实际问题,让你在数学的世界中发现更多的趣味和应用。 扩展欧几里得算法公式推导与Python实现
我们平时观察世界的时候 ,都是通过我们的视觉直观感受。但是很多时候,这个世界大得超乎我们想象。大数据除了能够解决很多生活中的问题外,还是一种天然的、观察世界的视角。数据侠Chuan Sun分析了联合国开发计划署的全球人口数据,并用可视化的方式为大家打开了观察世界的新方式。
最小公倍数是指能同时将两数整除的最小倍数,而最大公约数是则是能被两数同时整除的最小因数。最小公倍数有个特点,就是最小为两数中的较大值,最大为两数的乘积;最小公倍数则是最小为1,最大为两数中较小值(如果两数相同,那么最大公约数、最小公倍数是它们本身)🎉🎉🎉
继续今天的算法学习,来两个中等的算法题:删除有序数组中的重复项II、小红书2023秋招提前批-小红的数组构造。
算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !
首先给定两个数a,b(a>b),则根据除法运算,a/b=q…r。q是商,r是余数。也可以表示为a=bq+r。这是小学就知道的。
辗转相除法是求最大公约数的一种方法,又名欧几里德算法(Euclidean algorithm),求最大公约数的方法还有更相减损法。
领取专属 10元无门槛券
手把手带您无忧上云