旅行商问题的近似最优解(局部搜索、模拟退火、遗传算法) ★关键字:旅行商问题,TSP,局部搜索,模拟退火,遗传算法 ” TSP问题(Traveling Salesman Problem)是一个组合优化问题...也就是说,没有一个算法能够在多项式时间内解得TSP问题的最优解,所以只能通过我们介绍的方法,即遗传算法、模拟退火算法、局部搜索,来寻求近似最优解。...模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。...算法 10次测试最小值 城市数与理论最优解 遗传算法 871 20个城市,最优解870 模拟退火算法 871 20个城市,最优解870 局部搜索 918 20个城市,最优解870 遗传算法 15414...31个城市,最优解14700 模拟退火算法 15380 31个城市,最优解14700 局部搜索 16916 31个城市,最优解14700 遗传算法 32284 144个城市,最优解略小于32000 模拟退火算法
文章目录 一、唯一最优解 二、无穷多最优解 三、无界解 四、无可行解 五、线性规划迭代范围 六、线性规划求解步骤 一、唯一最优解 ---- 使用单纯形法求解线性规划时 , 得到最优解时 , 所有的非基变量对应的检验数都小于...0 , 该线性规划有唯一最优解 ; 二、无穷多最优解 ---- 使用单纯形法求解线性规划时 , 得到最优解时 , 存在一个或多个非基变量对应的检验数等于 0 , 那么该线性规划有无穷多最优解...无界解 ; 四、无可行解 ---- 使用人工变量法 ( 大 M 单纯形法 ) 求解线性规划 , 得到最优解时 , 此时基变量中还存在人工变量 , 人工添加的变量没有迭代出去 , 这种情况下 , 该线性规划没有可行解...; 五、线性规划迭代范围 ---- 线性规划迭代范围 : 无限范围 : 首先迭代的范围是 无穷多元素的 可行解 的集合 ; 有限范围 : 缩小该迭代范围为 有限个元素的 基可行解 集合 ;...六、线性规划求解步骤 线性规划求解步骤 : 初始 : 找到初始基可行解 ; 最优 : 最优解判定准则 ; 迭代 : 如果不是最优解 , 如何进行下一次迭代 ;
本文作为补充文章,对更复杂的题目进行解答,如果还没有阅读上篇文章,希望小伙伴们先去看一下上篇文章:详解股票买卖算法的最优解(一),有助于理解。...总结 好了,关于股票买卖算法的最优解系列就告一段落。 这类题型的解题思路就是引入了状态转移方程的概念,现在我们一起弄懂了这种解题思路,是不是还有一点小成就感呢。...算法专辑: 和同事谈谈Flood Fill 算法 详解股票买卖算法的最优解(一)
一 报告导读 本次报告介绍了博弈论思想在人工智能领域的应用,首先介绍了使用传统的数据拟合寻找最优解的思路,之后引入博弈论的思想,以AlphaGo和对抗生成网络为例介绍了均衡解的问题。...但是在现实生活中,很多的问题求解不是最优解,而是均衡解,这个均衡解就和博弈非常地相关,博弈叫做两害相全取其轻,两力相权取其重,博弈在中国历史上有非常悠久的历史,孔子曾说你吃饱了没事干也是很困难的,你不可以去下棋吗...但实际上在这个博弈的过程里,甲沉默和乙沉默各判半年,对他们来说是最优解,但是在现实生活当中他们往往趋向于达成一个均衡解。...在我们的社会生活中,我们构造的一些模型,希望去求这个最优解,但往往这种模型求出来的是这个均衡解,这就使得我们去反思,什么时候要用模型去求它的这个均衡解,而不是最优解。 ?...和我们相关的GAN,它也是一个均衡解,有一个生成的模型,也有一个判别的模型,生成模型和判别模型之间要形成一个均衡解,使得我的这个生成模型所产生的数据难以被判别模型所区分开来,也就是矛和盾之间均衡的对决。
前言 在很多问题上是没有标准解的,我们要找到最优解。 这就用到了遗传算法。 遗传算法是一种通过模拟自然进化过程来解决问题的优化算法。 它在许多领域和场景中都有广泛应用。...以下是一些常见的使用遗传算法的场景: 优化问题:遗传算法可以应用于各种优化问题,如工程设计、物流优化、路径规划、参数调优等。 它可以帮助找到最优或接近最优解,解决复杂的多目标优化问题。...机器学习:遗传算法可以用于机器学习的特征选择和参数调优。 例如,使用遗传算法来选择最佳特征组合,或者通过遗传算法搜索最佳参数配置以提高机器学习算法的性能。...约束满足问题:遗传算法可以用于解决约束满足问题,如布尔满足问题(SAT)、旅行商问题(TSP)等。 它可以搜索解空间,寻找满足所有约束条件的最优解或近似最优解。...从中选择最优的N个染色体继续繁殖,达到设置的繁殖代数后,获取适应度最高的个体。 需要注意的是 繁殖次数内不一定找到最优的解,繁殖的次数越多找到最优解的可能越高。
李想总是找最优解,但他说其实他找的是次优解,因为最优解风险太大,往往有着巨坑,比如苹果会研发最新技术,但会使用次一级成熟技术。 理想已经变成了2w人的公司,李想理解了组织必须和规模匹配。
定义矩阵乘法 def mult(h, x): result = [] for x in h: summ = 0 ...
给定链表 1->2->3->4, 重新排列为 1->4->2->3. ” 二、题目解析 这题属于是链表题的大杂烩了,包含了链表题型中会涉及到的很多思想,非常考研基本功,也难怪字节会考察,同时还希望你能给出最优解
简要 本篇主要记录三种求最优解的算法:动态规划(dynamic programming),贪心算法和平摊分析....动态规划 1.动态规划是通过组合子问题的解而解决整个问题的.分治法算法是指将问题划分成一些独立的子问题, 递归地求解各个子问题,然后合并子问题的解而得到原问题的解.与此不同,动态规划适用于子问题不是独立的情况...动态规划算法的设计可以分为以下四个步骤: 1.描述最优解的结构 2.递归定义最优解的值 3.按自底向上的方式计算最优解的值 4.由计算出的结果构造一个最优解 能否运用动态规划方法的标志之一:一个问题的最优解包含了子问题的一个最优解....这个性质为最优子结构....适合采用动态规划的最优化问题的两个要素:最优子结构和重叠子问题 贪心算法 1.贪心算法是使所做的选择看起来都是当前最佳的,期望通过所做的局部最优选择来产生出一个全局最优解. 2.贪心算法的每一次操作都对结果产生直接影响
图解法 处理 线性规划问题 ( 取最大值 仅有一个最优解的情况 ) III . 图解法 处理 线性规划问题 ( 取最大值 有无穷多最优解 ) IV ....图解法 处理 线性规划问题 ( 取最小值 有一个最优解 ) V . 图解法 处理 线性规划问题 ( 无界解 ) VI . 图解法 处理 线性规划问题 ( 无可行解 ) VII ....; 这个最优解的个数是无穷多个 ; 经过计算 , 得到的结果最大为 34.2 , 此时 ( 3.8 , 4 ) 到 ( 7.6 , 2 ) 线段之间的所有的点都是最优解 IV ...., 同时也没有最优解 VII ....线性规划解的情况 线性规划有以下情况的解 : ① 有唯一最优解 , ② 有无穷多最优解 , ③ 无界解 , ④ 无可行解 ; 使用图解法的关键 : ① 可行域 : 根据 大于等于 或 小宇等于 不等式
主要用的技巧是“状态机”,那么什么是“状态机”呢?没听过的小伙伴会觉得它很高大尚,但今天我们讨论过后,你会发现其实它就是那么回事。
本篇进一步介绍动态规划的基本应用。 1 题目 You are a professional robber planning to rob houses alon...
给定一个无向图 G=(V,E),每个顶点都有一个标号,它是一个 [0,231−1] 内的整数。
启发式算法(Heuristic Algorithm)是一种基于直观或经验的构造的算法,对具体的优化问题能在可接受的计算成本(计算时间、占用空间等)内,给出一个近似最优解,这个近似解与真实最优解的偏离程度一般不能被预计...一个精心设计的启发式算法,通常能在较短时间内得到问题的近似最优解,对于 NP 问题也可以在多项式时间内得到一个较优解。 启发式算法不是一种确切的算法,而是提供了一个寻找最优解的框架。...其中 Metropolis 准则是 SA 算法收敛于全局最优解的关键所在,当搜索到不好的解,Metropolis 准则会以一定概率接受这个不好的解,使算法具备跳出局部最优的能力。.../ 遗传算法 GA / 遗传算法借鉴了达尔文的进化论和孟德尔的遗传学说,将待解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解...当利用交叉和变异产生子代时,很可能在某个中间步骤丢失得到的最优解,在每次产生子代时,首先把当前最优解复制到子代中,防止进化过程中产生的最优解被交叉和变异破坏,这就是精英主义的思想。
在每一步选择中,贪心算法总是选择在当前看来最优的选择,希望通过这些局部最优选择最终能构建出全局最优解。贪心算法的特点是简单高效,但它并不总能保证得到最优解。...一、贪心算法的基本概念 贪心算法的核心思想是每一步都选择当前最优的决策,不考虑未来的影响。贪心算法的基本步骤通常包括以下几个: 选择:选择当前最优的选项。...四、总结 贪心算法是一种通过局部最优选择构建全局最优解的方法。虽然它不总能保证得到最优解,但在许多实际问题中表现良好。通过理解和应用贪心算法,我们可以有效地解决许多复杂的优化问题。
隐私计算作为一种“数据可用不可见”解决方案,为数据治理面临的挑战提供技术最优解: 一是,通过隐私计算的 “数据不动,模型和结果移动”促进数据要素的流通与价值的发挥; 二是,通过密码学和隐私保护技术实现了
贪心算法的基本思想是每一步都选择当前状态下的最优解,通过局部最优的选择,来达到全局最优。...这个选择通常是基于当前局部最优的判断。局部最优选择: 通过选择局部最优解,期望达到整体的最优解。每一步都贡献一部分最优解,最终形成全局最优解。不断迭代更新: 重复上述步骤,逐步构建出整个问题的解。...贪心算法的应用场景贪心算法在解决一些最优化问题时可以有很好的应用,但需要注意的是,并非所有问题都适合贪心算法。。贪心算法只能得到局部最优解,而不一定是全局最优解。...这就是贪心算法的基本思路:每一步选择当前状态下的最优解,期望最终达到全局最优解。应用场景二:活动选择问题假设有一个教室,需要安排一系列活动。每个活动都有一个开始时间和结束时间,而且这些活动互不相容。...然而,需要注意的是,贪心算法并不适用于所有问题,因为贪心选择可能会导致局部最优解并不一定是全局最优解。不全局最优: 在某些情况下,贪心算法可能会陷入局部最优解,而无法达到全局最优。
在重新组织自己个人电脑的Python开发环境时,因为原生Pip无法安装某个包,较为简单的解决办法是使用conda,于是便又重新折腾了一番,最终发现Miniconda或许可以成为自己搭建Python开发环境的最优解...于是,一边厌恶于Anaconda的臃肿和繁杂,另一边又似乎存在对conda管理虚拟环境的刚需——二者结合,似乎Miniconda便顺其自然成了最优解!尝试一番,体验果真不错!
文章目录 一、线性规划示例 二、转化标准形式 三、查找初始基可行解 四、初始基可行解的最优解判定 五、第一次迭代 : 入基与出基变量选择 六、第一次迭代 : 方程组同解变换 七、第一次迭代 : 生成新的单纯形表...最优解判定 : 【运筹学】线性规划数学模型 ( 单纯形法 | 最优解判定原则 | 可行解表示 | 目标函数推导 | 目标函数最大值分析 ) 【运筹学】线性规划数学模型 ( 单纯形法 | 最优解判定原则...| 单纯形表 | 系数计算方法 | 根据系数是否小于等于 0 判定最优解 ) 【运筹学】线性规划数学模型 ( 单纯形法 | 最优解判定原则 | 线性规划求解示例 ) 3 ....单纯形法阶段总结 : 【运筹学】线性规划 单纯形法 阶段总结 ( 初始基可行解 | 判定最优解 | 迭代 | 得到最优解 | 全流程详细解析 ) ★ 推荐 一、线性规划示例 ---- 使用单纯形法求解线性规划最优解..., 下面判定该解是否是最优解 ; 四、初始基可行解的最优解判定 ---- 使用 检验数矩阵 ( C_N^T - C_B^T B^{-1}N ) 判断上述解 , 是否是最优解 , 该矩阵计算结果中所有的数
领取专属 10元无门槛券
手把手带您无忧上云