链表排序算法总结 概述 问题描述:给定一个链表,请将这个链表升序排列。...节点定义: struct ListNode { int val; ListNode *next; ListNode(int x) : val(x), next(NULL...这一题十分类似于Leetcode 0023 合并K个有序链表,我们可以使用LC23的思路求解。代码中的变量如下图所示: 上面的做法用C++演示。...用Java演示一下递归(自顶向下)的写法,但是空间复杂度不是 O ( 1 ) O(1) O(1)的。...递归的过程中,我们每次都要遍历整个链表,对节点值小于val的节点接到left中,节点值等于val的节点接到mid中,节点值大于val的节点接到right中,之后还要将三个链表的尾结点置为空。
前言 在很多问题上是没有标准解的,我们要找到最优解。 这就用到了遗传算法。 遗传算法是一种通过模拟自然进化过程来解决问题的优化算法。 它在许多领域和场景中都有广泛应用。...以下是一些常见的使用遗传算法的场景: 优化问题:遗传算法可以应用于各种优化问题,如工程设计、物流优化、路径规划、参数调优等。 它可以帮助找到最优或接近最优解,解决复杂的多目标优化问题。...机器学习:遗传算法可以用于机器学习的特征选择和参数调优。 例如,使用遗传算法来选择最佳特征组合,或者通过遗传算法搜索最佳参数配置以提高机器学习算法的性能。...约束满足问题:遗传算法可以用于解决约束满足问题,如布尔满足问题(SAT)、旅行商问题(TSP)等。 它可以搜索解空间,寻找满足所有约束条件的最优解或近似最优解。...需要注意的是 繁殖次数内不一定找到最优的解,繁殖的次数越多找到最优解的可能越高。
01 模型简介 最优子集回归是多元线性回归方程的自变量选择的一类方法。从全部自变量所有可能的自变量组合的子集回归方程中挑选最优者。...(best.summary$cp)#马洛斯Cp值 which.max(best.summary$adjr2) #调整R2 which.min(best.summary$bic) #贝叶斯信息准则 执行最优子集回归后返回的是自变量组合的子集回归方程...,以及每个回归方程对应的评价指标,采用which函数选取最优的回归方程。...",xlab = "numbers of Features", ylab = "adjr2",main = "adjr2 by Feature Inclusion") 究竟是哪些变量是入选的最优变量呢...可做图观察,图横坐标为自变量,纵坐标是调整R2,且最上面的变量搭建的回归方程的调整R2是最大的,同时利用coef()可以查看最优回归方程的回归系数,结合来看变量APSLAKE、OPRC和OPSLAKE是筛选出来的变量
贪心算法(Greedy Algorithm)是一种逐步构建解决方案的方法。在每一步选择中,贪心算法总是选择在当前看来最优的选择,希望通过这些局部最优选择最终能构建出全局最优解。...贪心算法的特点是简单高效,但它并不总能保证得到最优解。 一、贪心算法的基本概念 贪心算法的核心思想是每一步都选择当前最优的决策,不考虑未来的影响。...贪心算法的基本步骤通常包括以下几个: 选择:选择当前最优的选项。 验证:验证当前选择是否可行(通常包括是否满足约束条件)。 构建:将当前选择加入到最终的解决方案中。...活动选择:选择最多的不重叠活动。 任务分配:将任务尽可能多地分配给工人。 区间覆盖:用最少数量的区间覆盖所有点。 四、总结 贪心算法是一种通过局部最优选择构建全局最优解的方法。...虽然它不总能保证得到最优解,但在许多实际问题中表现良好。通过理解和应用贪心算法,我们可以有效地解决许多复杂的优化问题。希望通过本文的介绍,大家能够更好地理解和应用贪心算法。
源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。...二、粒子群算法分析 1、基本思想 粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。...每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置...下面的动图很形象地展示了PSO算法的过程: 2、更新规则 PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。...vector pos; vector spd; //定义粒子的历史最优位置和全局最优位置 vector p_best; double g_best; /
贪心算法的基本思想是每一步都选择当前状态下的最优解,通过局部最优的选择,来达到全局最优。...在每一步选择后,更新问题的状态,准备进行下一轮选择。贪心算法的应用场景贪心算法在解决一些最优化问题时可以有很好的应用,但需要注意的是,并非所有问题都适合贪心算法。。...贪心算法只能得到局部最优解,而不一定是全局最优解。以下是一些贪心算法常见的应用场景:找零钱问题: 例如硬币找零问题,选择最大面值的硬币直到凑够总金额。...最终,算法选择的活动是 {A1, A2, A4, A5},它们是互相兼容的,不重叠。这就是贪心算法的基本思路:在每一步选择中,选取局部最优解以期望达到全局最优解。...然而,需要注意的是,贪心算法并不适用于所有问题,因为贪心选择可能会导致局部最优解并不一定是全局最优解。不全局最优: 在某些情况下,贪心算法可能会陷入局部最优解,而无法达到全局最优。
寻找最大的K个数 从n个数中寻找最大的K个数。 01 class 两种思路: 1 保存目前找到的最大k个数,每访问一个数,就与这k个数中的最小值比较,决定是否更新这k个数。...(测试发现,手工建堆的效率最高,当n和k增大到一定值时,采用红黑树的multiset的效率极差。手动建堆的效率相比priority_queue有略微提高。) 2 修改排序方法,去除不必要的过程。...堆排序: 构建好最大堆后,取 k次最大值 快速排序: 分区时,根据数P将数组分为两部分,设大于P的数个数为a,小于P的数的个数为b。...如果,a>=k,则从这a个数取最大的k个数,若a<k,则从b个数取最大的k-a-1个。 归并排序: 当待合并的两个数组,两数组长度和大等于k时,合并时只取前k个。...遗憾的是:STL没有提供完全基于堆排序的nth_element。
简要 本篇主要记录三种求最优解的算法:动态规划(dynamic programming),贪心算法和平摊分析....动态规划 1.动态规划是通过组合子问题的解而解决整个问题的.分治法算法是指将问题划分成一些独立的子问题, 递归地求解各个子问题,然后合并子问题的解而得到原问题的解.与此不同,动态规划适用于子问题不是独立的情况...动态规划算法的设计可以分为以下四个步骤: 1.描述最优解的结构 2.递归定义最优解的值 3.按自底向上的方式计算最优解的值 4.由计算出的结果构造一个最优解 能否运用动态规划方法的标志之一:一个问题的最优解包含了子问题的一个最优解...适合采用动态规划的最优化问题的两个要素:最优子结构和重叠子问题 贪心算法 1.贪心算法是使所做的选择看起来都是当前最佳的,期望通过所做的局部最优选择来产生出一个全局最优解. 2.贪心算法的每一次操作都对结果产生直接影响...,而动态规划不是.贪心算法对每个子问题的解决方案做出选择,不能回退;动态规划则会根据之前的选择结果对当前进行选择,有回退功能.动态规划主要运用于二维或三维问题,而贪心一般是一维问题. 3.贪心算法要经过证明才能运用到算法中
对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...总体来看,机器学习的核心目标是给出一个模型(一般是映射函数),然后定义对这个模型好坏的评价函数(目标函数),求解目标函数的极大值或者极小值,以确定模型的参数,从而得到我们想要的模型。...最优化算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...在训练样本数很大时,如果训练时每次迭代都用所有样本,计算成本太高,作为改进可以在每次迭代时选取一批样本,将损失函数定义在这些样本上。...动态规划算法能高效的求解此类问题,其基础是贝尔曼最优化原理。一旦写成了递归形式的最优化方程,就可以构造算法进行求解。
导言 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...总体来看,机器学习的核心目标是给出一个模型(一般是映射函数),然后定义对这个模型好坏的评价函数(目标函数),求解目标函数的极大值或者极小值,以确定模型的参数,从而得到我们想要的模型。...最优化算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...动态规划算法能高效的求解此类问题,其基础是贝尔曼最优化原理。一旦写成了递归形式的最优化方程,就可以构造算法进行求解。...视频背景建模 23.8 本集总结 第 24 集聚类算法 1 24.1 本集内容简介 24.2 聚类问题简介 24.3 聚类算法的分类 24.4 层次聚类流程 24.5 层次聚类的实例 24.6 簇距离的定义
导言 ---- 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...总体来看,机器学习的核心目标是给出一个模型(一般是映射函数),然后定义对这个模型好坏的评价函数(目标函数),求解目标函数的极大值或者极小值,以确定模型的参数,从而得到我们想要的模型。...最优化算法的分类 ---- 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...在训练样本数很大时,如果训练时每次迭代都用所有样本,计算成本太高,作为改进可以在每次迭代时选取一批样本,将损失函数定义在这些样本上。...↓关注后,后台回复【最优化】可下载最优化算法的资料
,可以看成是我们把买入的资金又以不同的价格卖了出去,此时我们的总资金才真的增加了钱数,对于我们的总资金来说才算真正的盈利了。...Math.max(dp_i_1,temp-prices[i]-fee); } return dp_i_0; } 总结 好了,看到这里以上4道关于股票买卖的算法题我们就完美解决了...,小伙伴们看懂了吗,希望大家仔细思考解题思路,能实际运用这套框架哦,这是关于股票买卖算法的第一篇文章,后续会有补充内容,对剩下比较复杂的题目提供解题方法,欢迎阅读我的下一篇文章,一起研究算法吧。...常见的消息中间件有哪些?你们是怎么进行技术选型的? 你懂RocketMQ 的架构原理吗? 聊一聊RocketMQ的注册中心NameServer Broker的主从架构是怎么实现的?...算法专辑: 和同事谈谈Flood Fill 算法
本文作为补充文章,对更复杂的题目进行解答,如果还没有阅读上篇文章,希望小伙伴们先去看一下上篇文章:详解股票买卖算法的最优解(一),有助于理解。...public int maxProfit(int[] prices) { int n = prices.length; int max=0; //定义三维数组...总结 好了,关于股票买卖算法的最优解系列就告一段落。 这类题型的解题思路就是引入了状态转移方程的概念,现在我们一起弄懂了这种解题思路,是不是还有一点小成就感呢。...解决这类问题的关键就是确认有几种选择,确定有几种状态,设定状态转移方程,处理特殊情况的值。之后就是套用进代码,解决问题。 希望大家再做算法题的时候脑子里能回忆起这种框架的解题思路。...算法专辑: 和同事谈谈Flood Fill 算法 详解股票买卖算法的最优解(一)
学习完该算法以后,逻辑框架基本上就有了,剩下需要明确的就是对应的python的语言。...)“数学符号”(详见mofan的优酷),以及print的使用 1.def是python中指定义,一般用来定义函数,如果需要深度学习搭建网络可用来定义网络。...就在一个半小时前,我成功搞完了最优化六大代码,纯手打,无外力。开心! 这是我第一组自己实现的python代码,就是数学公式用python语言组装起来。...然后我就开始分析我们的题,我发现大体需要两部分,一部分函数定义,一部分循环体。但我不知道如何定义函数,如何写数学公式,如何弄变量,也就是说一些小点不太会,所以我选择直接百度。...我还意识到,汇编其实是最难的语言,目前为止所学到的,因为很多都需要自己去定义,去死抠,需要记住大量的指令且不能灵活变通。但是其他的却只需要将一些对应的记下来就好。python真的挺简单的。
导言 对于几乎所有机器学习算法,无论是有监督学习、无监督学习,还是强化学习,最后一般都归结为求解最优化问题。因此,最优化方法在机器学习算法的推导与实现中占据中心地位。...总体来看,机器学习的核心目标是给出一个模型(一般是映射函数),然后定义对这个模型好坏的评价函数(目标函数),求解目标函数的极大值或者极小值,以确定模型的参数,从而得到我们想要的模型。...最优化算法的分类 对于形式和特点各异的机器学习算法优化目标函数,我们找到了适合它们的各种求解算法。...除了极少数问题可以用暴力搜索来得到最优解之外,我们将机器学习中使用的优化算法分成两种类型(本文不考虑随机优化算法如模拟退火、遗传算法等): 公式求解 数值优化 前者给出一个最优化问题精确的公式解...在训练样本数很大时,如果训练时每次迭代都用所有样本,计算成本太高,作为改进可以在每次迭代时选取一批样本,将损失函数定义在这些样本上。
前言 树是一种逻辑上的概念,切记,这会帮助你理解。 学习算法过程中你不得立即获得正向反馈,这就是学习无奈的地方,学习更像是一种投资。...学习算法也是,你可以找到好工作,这是一种长期投资。 坚持下去。 树 树是一种逻辑上的概念,切记,这会帮助你理解。 树是一种数据结构 它是由n(n>=1)个有限结点组成一个具有层次关系的集合。...图片 术语 结点的度(Degree):结点拥有的子树的数目,root,有 0-2个结点 叶子结点:度为0的结点 //就是最后一个节点 分支结点:度不为0的结点 树的度:树内各结点的度的最大的值...对森林加上一个根,森林即成为树;删去根,树即成为森林 图片 二叉树的度是指树中所以结点的度数的最大值。二叉树的度小于等于2,因为二叉树的定义要求二叉树中任意结点的度数(结点的分支数)小于等于2 。...从根结点到某个结点的路径上的所有结点都是该结点的祖先。 图片 节点的层次 结点的层次(Level)从根开始定义起,根为第一层,根的孩子为第二层。 树中结点的最大层次称为树的深度(Depth)或高度。
速度取决于算法 代码的运算速度取决于以下几个方面 1、 算法本身的复杂度,比如MPEG比JPEG复杂,JPEG比BMP图片的编码复杂。...第一个优化 以下是输入和输出的定义: #define XSIZE 640 #define YSIZE 480 #define IMGSIZE XSIZE * YSIZE typedef struct...然后用查表算法计算呢? 我们使用3个数组分别存放DEF的256种可能的取值,然后。。。...以上就是对《让你的软件飞起来》的摘录,下面我将按照这位牛人的介绍,对RGB到YCbCr的转换算法做一下总结。...,这种算法应该是非常快的了,以后可直接使用了。
2018 06 21 模拟退火算法 模拟退火算法 ( simulated anneal , SA) 求解最优化问题常用的算法,今天应用 SA 解决一元多次函数最小值的例子解释 SA 算法。...(-ΔT/kT) 接受 S′ 作为新的当前解 如果满足终止条件则输出当前解作为最优解,结束程序,终止条件通常取为连续若干个新解都没有被接受时终止算法。...这是有意选取的一个多峰值函数,观察SA算法是否陷入局部极小;爬山算法是怎么陷入局部极小的,SA又是怎么跳出局部极小的。...T,T_max 是解空间的取值范围,i 是迭代次数,best是初始最优解,设为在 T处,break_i是控制跳出的次数,每当取到最优解则置为0. 评价函数选用min(s,s')....以下两行是展示搜索过程的代码,不是算法的代码。
算法是面试考察的重点,基础算法更是基础,只有打好了基础才可能在此之上深入学习。这里总结了最常见的排序算法,每个都进行了详细分析,大家可以好好研究吸收。...所以shell排序是不稳定的排序算法。...算法步骤: 比较相邻的元素。...性能分析: 平均时间复杂度为线性的 O(n+C) 最优情形下,桶排序的时间复杂度为O(n)。桶排序的空间复杂度通常是比较高的,额外开销为O(n+m)(因为要维护 M 个数组的引用)。...关于稳定性: 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序
该篇文章收录专栏—趣学算法 ---- 目录 一、贪心算法 (1)介绍 (2)注意事项 (3)性质 1)贪心选择 2)最优子结构 二、最优装载问题 (1)古董重量排序 (2)贪心策略选择 模板代码 (...1)分析 (2)伪代码 代码优化 (1)分析 (2)伪代码 三、 程序实现 ---- 一、贪心算法 (1)介绍 贪心算法总是做出当前最好的选择,期望通过局部最优解选择,从而得到全局最优的解决方案。...2)有可能得不到最优解,而是得到最优解的近似值。 3)选择什么样的贪心策略直接决定了算法的好坏。...(3)性质 人们通过实践发现,利用贪心算法求解的问题往往具有两个重要的性质:贪心选择和最优子结构。只要满足这两个性质,就可以使用贪心算法。...贪心算法通过一系列的局部最优解(子问题的最优解)得到全局最优解(原问题的最优解),如果原问题的最优解和子问题的最优解没有关系,则求解子问题没有任何意义,无法采用贪心算法。
领取专属 10元无门槛券
手把手带您无忧上云