在数据分析中,常常有这样的场景,需要对不同类别的数据,分别进行处理,然后再将处理之后的内容合并,作为结果输出。对于这样的场景,就需要借助灵活的groupby功能来处理。...上述例子在python中的实现过程如下 >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'x':['a','a...groupby函数的返回值为为DataFrameGroupBy对象,有以下几个基本属性和方法 >>> grouped = df.groupby('x') >>> grouped pandas.core.groupby.generic.DataFrameGroupBy...中的groupby实际上非常的灵活且强大,具体的操作技巧有以下几种 1....()) y 0 0 1 2 2 -2 3 3 4 3 5 8 pandas中的groupby功能非常的灵活强大,可以极大提高数据处理的效率。
安装并使用PandasPandas对象简介Pandas的Series对象Series是广义的Numpy数组Series是特殊的字典创建Series对象Pandas的DataFrame对象DataFrame...Pandas对象简介 如果从底层视角观察Pandas,可以把它们看成增强版的Numpy结构化数组,行列都不再是简单的整数索引,还可以带上标签。...先来看看Pandas三个基本的数据结构: Series DataFrame Index Pandas的Series对象 Pandas的Series对象是一个带索引数据构成的一维数组,可以用一个数组创建Series...的DataFrame对象 Pandas的另一个基础数据结构是DataFrame。...Pandas 的 Index 对象是一个很有趣的数据结构,可以将它看作是一个不可变数组或有序集合 # 使用一个简单的列表创建Index对象 ind = pd.Index([2, 3, 5, 7, 11]
作者:闫钟峰,Datawhale优秀学习者 寄语:本文介绍了创建多级索引、多层索引切片、多层索引中的slice对象、索引层的交换等内容。 创建多级索引 1....第二类特殊情况:由列表构成元组 选出第一层在‘C_2’和'C_3'中且第二层在'street_4'和'street_7'中的行。...df_using_mul.sort_index().loc[(['C_2','C_3'], ['street_1','street_4','street_7']),:] 多层索引中的slice对象 行索引和列索引均有两个层级...pd.IndexSlice[df_s.sum()>4] 分解开来看--行的筛选,注意观察发现,最终结果没有第一次行索引为A的, 但下边的结果中第一层索引为A的有等于True的--这是因为前边还有个slice...list的对象, 是原来索引层级(用默认整数表示)的一个排列。
作者:Peter 编辑:Peter 大家好,我是Peter~ 今天给大家一片关于Pandas的基本文章:9种你必须掌握的Pandas索引。...索引在我们的日常生活中其实是很常见的,就像: 一本书有自己的目录和具体的章节,当我们想找某个知识点,翻到对应的章节即可; 也像图书馆中的书籍被分类成文史类、技术类、小说类等,再加上书籍的编号,很快就能够找到我们想要的书籍...在Pandas中创建合适的索引则能够方便我们的数据处理工作。 [e6c9d24ely1h0dalinfwhj20lu08e3yq.jpg] <!...pd.Index Index是Pandas中的常见索引函数,通过它能够构建各种类型的索引,其语法为: [e6c9d24ely1h0gmuv2wmmj20x60detah.jpg] pandas.Index...0 pd.Int64Index 指定数据类型是int64整型 pandas.Int64Index( data=None, # 生成索引的数据 dtype=None, # 索引类型,默认是int64
有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...默认情况下,它不能处理字母型的字符串’pandas’: >>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise') ValueError: Unable...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串: >>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1...']}, dtype='object') >>> df.dtypes a object b object dtype: object 然后使用infer_objects(),可以将列’a’的类型更改为
例如,我有这个数据帧 one | two | three 1 1 10 1 1 nan 1 1 nan 1 2 nan 1 2 20 1 2 nan 1 3 nan 1 3 nan 我想使用列[‘one...’]和[‘two’]的键,这是相似的,如果列[‘three’]不完全是nan,那么从列中的值为一行类似键的现有值’3′] 这是我的愿望结果 one | two | three 1 1 10 1 1 10...我尝试过使用groupby fillna() df[‘three’] = df.groupby([‘one’,’two’])[‘three’].fillna() 这给了我一个错误....我尝试了向前填充,这给了我相当奇怪的结果,它向前填充第2列.我正在使用此代码进行前向填充. df[‘three’] = df.groupby([‘one’,’two’], sort=False)[‘three...three 0 1 1 10.0 1 1 1 40.0 2 1 1 25.0 3 1 2 20.0 4 1 2 20.0 5 1 2 20.0 6 1 3 NaN 7 1 3 NaN 标签:python,pandas
导读 pandas作为Python数据分析的瑞士军刀,集成了大量实用的功能接口,基本可以实现数据分析一站式处理。...01 如何理解pandas中的groupby操作 groupby是pandas中用于数据分析的一个重要功能,其功能与SQL中的分组操作类似,但功能却更为强大。...0,表示沿着行切分 as_index,是否将分组列名作为输出的索引,默认为True;当设置为False时相当于加了reset_index功能 sort,与SQL中groupby操作会默认执行排序一致,该...示例数据 单列作为分组字段,不设置索引 ? 单列字段的转换格式作为分组字段 ? 字典,根据索引对记录进行映射分组 ? 函数,根据函数对索引的执行结果进行分组 ?...实际上,pandas中几乎所有需求都存在不止一种实现方式!
在pandas中,Series和DataFrame对象是介绍的最多的,Index对象作为其构成的一部分,相关的介绍内容却比较少。...对于Index对象而言,有以下两大类别 Index MultiIndex 二者的区别就在于层级的多少,从字面含义也可以看出,MultiIndex指的是多层索引,Index是单层索引。...先从单层索引开始介绍,在声明数据框的时候,如果没有指定index和columns参数,pandas会自动生成对应的索引,示例如下 >>> import pandas as pd >>> import numpy...RangeIndex属于Index中的一种形式,Index是更通用的函数,通过Index函数可以显示创建Index对象,用法如下 >>> df.index = pd.Index(list('ABCD')...在pandas中,有以下几种方法,来显示创建数值索引 # 浮点数 >>> pd.Float64Index([1, 2, 3, 4]) Float64Index([1.0, 2.0, 3.0, 4.0],
正确地创建和使用索引是实现高性能查询的基础,本文笔者介绍MySQL中的前缀索引和多列索引。...,因为MySQL无法解析id + 1 = 19298这个方程式进行等价转换,另外使用索引时还需注意字段类型的问题,如果字段类型不一致,同样需要进行索引列的计算,导致索引失效,例如 explain select...,第二行进行了全表扫描 前缀索引 如果索引列的值过长,可以仅对前面N个字符建立索引,从而提高索引效率,但会降低索引的选择性。...前缀字符个数 区分度 3 0.0546 4 0.3171 5 0.8190 6 0.9808 7 0.9977 8 0.9982 9 0.9996 10 0.9998 多列索引 MySQL支持“索引合并...); Using where 复制代码 如果是在AND操作中,说明有必要建立多列联合索引,如果是OR操作,会耗费大量CPU和内存资源在缓存、排序与合并上。
的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的 对象...类似一维数组的对象 由数据和索引组成 索引(index)在左,数据(values)在右 索引是自动创建的 1....类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 1....的索引操作 索引对象Index 1.Series和DataFrame中的索引都是Index对象 示例代码: print(type(ser_obj.index)) print(type(df_obj2...索引对象不可变,保证了数据的安全 示例代码: # 索引对象不可变 df_obj2.index[0] = 2 运行结果: -----------------------------------------
,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁,本文就将针对pandas中的map()、apply()、applymap()、...2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果,譬如这里我们想要得到...● 多列数据 apply()最特别的地方在于其可以同时处理多列数据,譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
参考链接: 用Pandas建立索引并选择数据 作者 | 周志鹏 责编 | 刘静 据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用...在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子: 场景二:我们想要把所有渠道的流量来源和客单价单拎出来看一看...此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。...插入场景之前,我们先花30秒的时间捋一捋Pandas中列(Series)向求值的用法,具体操作如下: 只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。 ...作者:周志鹏,2年数据分析,深切感受到数据分析的有趣和学习过程中缺少案例的无奈,遂新开公众号「数据不吹牛」,定期更新数据分析相关技巧和有趣案例(含实战数据集),欢迎大家关注交流。
今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame中的索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构的一些常见的用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合的dict,所以我们想要查询表中的某一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...行索引其实对应于Series当中的Index,也就是对应Series中的索引。所以我们一般把行索引称为Index,而把列索引称为columns。...不仅如此,loc方法也是支持切片的,也就是说虽然我们传进的是一个字符串,但是它在原数据当中是对应了一个位置的。我们使用切片,pandas会自动替我们完成索引对应位置的映射。 ?...总结 今天主要介绍了loc、iloc和逻辑索引在pandas当中的用法,这也是pandas数据查询最常用的方法,也是我们使用过程当中必然会用到的内容。建议大家都能深刻理解,把它记牢。
--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...主要是两种方式: 指定DataFrame的一列为Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1...Categories对象 有4种取值情况 看到整个数据的最大值和最小值分别在头尾部 # 在上面的4分位数中使用四分位数名称:Q1\Q2\Q3\Q4 bins\_2 = pd.qcut(data1,4...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \
中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...user_info.city.map(lambda x: x.lower()) AttributeError: 'float' object has no attribute 'lower' 错误原因是因为 float 类型的对象没有...方法 描述 cat() 连接字符串 split() 在分隔符上分割字符串 rsplit() 从字符串末尾开始分隔字符串 get() 索引到每个元素(检索第i个元素) join() 使用分隔符在系列的每个元素中加入字符串...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat
一、简介 pandas提供了很多方便简洁的方法,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁。...2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。...输出多列数据 有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
pytorch中的数据索引 在PyTorch中,数据索引是指在处理张量(Tensor)时访问或操作特定元素的过程。...索引在数据处理和深度学习中是非常常见且重要的操作,它允许我们以各种方式访问数据集中的元素,执行数据的切片、提取、过滤等操作。...基本索引方法 在PyTorch中,数据索引的基本方法类似于Python中的列表索引。可以通过使用方括号和索引号来访问张量中的特定元素或子集。...布尔索引 使用布尔索引可以根据条件获取张量中满足条件的元素。...在训练神经网络时,经常需要对数据进行批处理,数据索引操作可以帮助我们有效地实现批处理操作。 实现了一个基于LeNet架构的简单神经网络对MNIST数据集进行训练和测试的过程。
.*; 4 5 /** 6 * 1:更改数据库中的数据 7 * @author biexiansheng 8 * 9 */ 10 public class Test04 { 11...";//数据库密码 20 //建立数据库连接,获得连接对象conn 21 Connection conn=DriverManager.getConnection...注意: 修改数据库是数据库操作必不可少的一部分,使用Statement接口中的excuteUpdate()方法可以修改数据表中的数据,也可以使用PreparedStatement接口中的excuteUpdate...方法对数据库中的表进行修改操作。...第二个案例使用PreparedStatement接口中的executeUpdate()方法修改数据库users表中的数据。
二、非聚合类方法 这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby()。...) print(data.shape) 2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果...有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...False) 可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg
数据框的长宽转换对于熟悉R语言的朋友而言,应该不会陌生。使用ggplot2画图时,最常用的数据处理就是长宽转换了。...在pandas中,也提供了数据框的长宽转换功能,有以下几种实现方式 1. stack stack函数的基本用法如下 >>> import pandas as pd >>> import numpy as...0.085568 G3 A 0.041538 B 0.910649 G4 A 0.230912 B 0.500152 dtype: float64 用法很简单,将所有的列标签转换为行标签,将对应的值转换为新的数据框中的某一列...,从而实现了数据框由宽到长的转换。...不同之处,在于转换后的列标签不是以index的形式出现,而是作为数据框中的variable列。
领取专属 10元无门槛券
手把手带您无忧上云