首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

更改由R中的Caret创建的曲线图中显示的调整参数

Caret是一个在R语言中广泛使用的机器学习工具包,用于训练和评估各种机器学习模型。在使用Caret创建曲线图时,可以通过更改调整参数来自定义曲线图的外观和行为。

调整参数是指可以修改的图形属性,以改变曲线图的样式和呈现方式。下面是一些常见的调整参数及其含义:

  1. col:曲线的颜色。可以使用预定义的颜色名称或十六进制颜色代码来指定颜色。
  2. lwd:曲线的线宽。可以设置为一个正整数值,表示线的粗细程度。
  3. lty:曲线的线型。可以设置为不同的数值来改变线的样式,如实线、虚线、点线等。
  4. xlimylim:曲线图的x轴和y轴的取值范围。可以设置为一个包含两个元素的向量,分别表示最小值和最大值。
  5. main:曲线图的标题。可以设置为一个字符串,作为曲线图的主标题。
  6. xlabylab:x轴和y轴的标签。可以设置为一个字符串,作为x轴和y轴的标签文字。

除了上述调整参数,还可以根据具体需求使用其他参数来进一步定制曲线图的外观和行为。

在Caret中创建曲线图时,可以使用plot()函数来绘制曲线图,并通过传递相应的参数来进行调整。以下是一个示例代码:

代码语言:txt
复制
# 加载Caret包
library(caret)

# 创建一个简单的曲线图
plot(1:10, type = "l", col = "blue", lwd = 2, lty = 2, xlim = c(0, 12), ylim = c(0, 15), main = "曲线图示例", xlab = "X轴", ylab = "Y轴")

在上述示例中,我们使用plot()函数创建了一个简单的曲线图,其中指定了曲线的颜色为蓝色,线宽为2,线型为虚线,x轴和y轴的取值范围分别为0到12和0到15,标题为"曲线图示例",x轴和y轴的标签分别为"X轴"和"Y轴"。

对于更复杂的曲线图需求,可以进一步探索Caret包中的其他函数和参数,以实现更高级的定制化效果。

腾讯云提供了一系列与云计算相关的产品,可以帮助用户在云上部署和管理各种应用。具体推荐的产品和产品介绍链接地址可以参考腾讯云官方文档或咨询腾讯云的客服人员。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【Lesson1】R 机器学习流程及案例实现

R 机器学习流程及案例实现 一直在学习机器学习项目;学断断续续。近期需要完成一些数据建模与分析,将机器学习重新整理了一遍。这篇文章主要是介绍R数据科学,构建机器学习模型流程。...主要花费精力是在Train数据集上,因为需要找到一个合适模型来拟合Train数据,对模型参数进行不断调整,达到该数据最优。...这里预测效果优越是需要根据预测变量类型来选择不同评估指标,主要分为分类与回归两种。然后绘制相应RMSE曲线或者ROC曲线,来展示模型预测性能。...案例操作 下面以caret举例,Caret优点:主要使用train函数,集中多个模型。其中函数定义了模型与调节参数,所以只要替换模型与参数,即可调用不同模型。...使用,后续会介绍如何使用Tidymodel,将简化操作,输入输出步骤。

94130

R语言实现逻辑回归模型

图1 balance分布 图1描述违约,不违约两种情况下信用卡余额分布,从图中可以看出,这两种情况下收入分布是不一样。...另外,从结果可以看到看到Null偏差(Null deviance),AIC和Fisher Scoring迭代次数,而不是剩余标准误差,Multipe R平方,调整R平方和F统计量。...我们可以使用caretconfusionMatrix()函数轻松获得灵敏度,特异性等值。...我们可以使用pROC包roc()函数为预测生成ROC曲线,roc()函数第一个参数是数据集真实标签,第二个参数是模型预测结果,第三个参数plot需要输入一个逻辑值,用以表明是否需要绘制ROC...AUC(曲线下面积)用于量化ROC轮廓,从图4可以看到,AUC值为0.952,模型效果很不错。 注: 本文选自于清华大学出版社出版《深入浅出R语言数据分析》一书小节,略有改动。

4.7K20
  • R语言梯度提升机 GBM、支持向量机SVM、正则判别分析RDA模型训练、参数调优化和性能比较可视化分析声纳数据|附代码数据

    在本文中,介绍简化模型构建和评估过程 ---- carettrain 函数可用于 使用重采样评估模型调整参数对性能影响 在这些参数中选择“最佳”模型 从训练集估计模型性能 首先,必须选择特定模型...) 为该模型测试默认值显示在前两列(shrinkage 并且 n.minobsinnode 未显示,因为候选模型网格集都对这些调整参数使用单个值)。...“ Kappa”列是 Cohen (未加权)Kappa 统计量在重采样结果平均值。 train 适用于特定模型。对于这些模型, train 可以自动创建一个调整参数网格。...例如,函数简单调用显示了第一个性能度量结果: tels.pr.st(cretTe()) 可以使用该metric 选项显示其他性能指标 : trels.r.st(carthme()) plt(Fit2...                 mtric = "ROC") 在这种情况下,与最佳调整参数相关 ROC 曲线平均面积在 100 次重采样为 0.922。

    74000

    使用R语言进行机器学习特征选择①

    使用caret包,使用递归特征消除法,rfe参数:x,预测变量矩阵或数据框,y,输出结果向量(数值型或因子型),sizes,用于测试特定子集大小整型向量,rfeControl,用于指定预测模型和方法一系列选项...ut]], cor =(cor)[ut] ) } res <- rcorr(as.matrix(Matrix)) cor_data <- up_CorMatrix (res$r)...一些模型,诸如决策树,内建有特征重要性获取机制。另一些模型,每个特征重要性利用ROC曲线分析获取。...从图中可以看出glucose, mass和age是前三个最重要特征,insulin是最不重要特征。...随机森林算法用于每一轮迭代评估模型方法。该算法用于探索所有可能特征子集。从图中可以看出当使用5个特征时即可获取与最高性能相差无几结果。

    3.7K40

    机器学习-R-特征选择

    使用caret包 使用递归特征消除法,rfe参数 x,预测变量矩阵或数据框 y,输出结果向量(数值型或因子型) sizes,用于测试特定子集大小整型向量 rfeControl,用于指定预测模型和方法一系列选项...Caret R包提供findCorrelation函数,分析特征关联矩阵,移除冗余特征 [python] view plain copy set.seed(7) # load the library...一些模型,诸如决策树,内建有特征重要性获取机制。另一些模型,每个特征重要性利用ROC曲线分析获取。...从图中可以看出glucose, mass和age是前三个最重要特征,insulin是最不重要特征。...随机森林算法用于每一轮迭代评估模型方法。该算法用于探索所有可能特征子集。从图中可以看出当使用4个特征时即可获取与最高性能相差无几结果。

    2.1K80

    R语言梯度提升机 GBM、支持向量机SVM、正则判别分析RDA模型训练、参数调优化和性能比较可视化分析声纳数据

    carettrain 函数可用于 使用重采样评估模型调整参数对性能影响 在这些参数中选择“最佳”模型 从训练集估计模型性能 首先,必须选择特定模型。 调整模型第一步是选择一组要评估参数。...) 为该模型测试默认值显示在前两列(shrinkage 并且 n.minobsinnode 未显示,因为候选模型网格集都对这些调整参数使用单个值)。...“ Kappa”列是 Cohen (未加权)Kappa 统计量在重采样结果平均值。 train 适用于特定模型。对于这些模型, train 可以自动创建一个调整参数网格。...---- 点击标题查阅往期内容 R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析 左右滑动查看更多 01 02 03 04 从这些图中,可能需要一组不同调谐参数...mtric = "ROC") 在这种情况下,与最佳调整参数相关 ROC 曲线平均面积在 100 次重采样为 0.922。

    1.7K20

    机器学习-R-特征选择

    使用caret包 使用递归特征消除法,rfe参数 x,预测变量矩阵或数据框 y,输出结果向量(数值型或因子型) sizes,用于测试特定子集大小整型向量 rfeControl,用于指定预测模型和方法一系列选项...Caret R包提供findCorrelation函数,分析特征关联矩阵,移除冗余特征 [python] view plain copy set.seed(7) # load the library...一些模型,诸如决策树,内建有特征重要性获取机制。另一些模型,每个特征重要性利用ROC曲线分析获取。...从图中可以看出glucose, mass和age是前三个最重要特征,insulin是最不重要特征。...随机森林算法用于每一轮迭代评估模型方法。该算法用于探索所有可能特征子集。从图中可以看出当使用4个特征时即可获取与最高性能相差无几结果。

    1.5K50

    第7章 模型评估 笔记

    trainControl可以设置重采样参数,指定boot\boot632\cv\repeatdcv\LOOCV\LGOCV\non\oob\adaptive_cv\adaptive_boot\adaptive_LGOCV...7.5 caret包对变量重要程度排序 得到监督学习模型后,可以改变输入值,比较给定模型输出效果变化敏感程度来评估不同特征对模型重要性。...7.8 利用caret包选择特征 特征选择可以挑选出预测误差最低属性子集,有助于我们判断究竟应该使用哪些特征才能建立一个精确模型,递归特征排除函数rfe,自动选出符合要求特征。...受试者工作曲线ROC是一种常见二元分类系统性能展示图形,曲线上分别标注了不同切点真阳和假阳率。...= "churn"], type = "prob") # 生成ROC曲线,在一个图中 glm.ROC <- roc(response = testset[,c("churn"),drop=TRUE],

    80020

    数据科学31 |机器学习-模型评价

    ,用于连续型数据 灵敏度 减少假阴性 特异性 减少假阳性 准确性 对假阳性、假阴性平均加权 一致性 ROC曲线 在二元预测,通常会估计样本出现其中一种结局(如阳性)概率,需要找到一个常数,即阈值(threshold...・AUC=0.5,预测算法表示为图中45º斜线,相当于随机对样本进行分类。 ・AUC=1,预测算法表示为图中左上角顶点,在这个阈值下,可以得到100%灵敏度和特异性,是个完美的分类器。...因此需要用独立数据集验证模型是否有效,来获得更好模型参数估计、更高测试集准确性。...函数 ・训练和测试:train()函数、predict()函数 ・模型比较:confusionMatrix()函数 R内置机器学习算法: ・线性判别分析(Linear discriminant analysis...表1 不同R机器学习算法预测函数 算法类型 R包 predict()函数语法 lda MASS predict(obj)(不需设置选项) glm stats predict(obj, type

    1.1K10

    一套完整基于随机森林机器学习流程(特征选择、交叉验证、模型评估))

    这样方便提取每个变量,且易于把模型x,y放到一个矩阵。 样本表和表达表样本顺序对齐一致也是需要确保一个操作。...# 有了前面的基础概述,再看每个参数含义就明确了很多 # 也知道该怎么调了 # 每个人要解决问题不同,通常不是别人用什么参数,自己就跟着用什么参数 # 尤其是到下游分析时 # ?...分类效果评估矩阵Confusion matrix,显示normal组分类错误率为0.06,tumor组分类错误率为0.13。...绘制ROC曲线,计算模型整体AUC值,并选择最佳模型。...个机器学习R包,这也太赞了吧 基于Caret和RandomForest包进行随机森林分析一般步骤 (1) Caret模型训练和调参更多参数解读(2) 基于Caret进行随机森林随机调参4种方式 机器学习第

    9.3K31

    最流行机器学习R语言软件包大PK

    有关方法详细信息,请参阅下文 CARET 排名第一,多个神经网络排名靠前 caret 排名第一也许并不奇怪。...它是一个用于创建机器学习工作流通用软件包,能很好地与一些算法特定软件包(排名靠后)整合在一起。...包细节 caret 是一个用于创建机器学习工作流一般包,并且它已经处于这个排名首位置。...ROCR 用于模型评估,包括 ROC 曲线(接收者操作特征曲线,receiver operating characteristic curve),gbm 实现梯度推进。...有时候很难选择正确 Github 库,而且不是所有的 R 包都是用 R 语言来实现(在该搜索 API ,「language:R参数似乎指的是该存储库写入所使用最流行语言) 相反,我们返回 CRAN

    2K60

    全代码 | 随机森林在回归分析经典应用

    我们尝试利用机器学习随机森林算法预测下,是否存在某些指标或指标组合可以预测阅读后关注人数。 数据格式和读入数据 数据集包括1588篇文章9个统计指标。...# 有了前面的基础概述,再看每个参数含义就明确了很多 # 也知道该怎么调了 # 每个人要解决问题不同,通常不是别人用什么参数,自己就跟着用什么参数 # 尤其是到下游分析时 # ?...从图中可以看出重要性排名前4变量都与“分享”相关 (分享产生阅读次数, 总分享人数, 总分享次数,首 次分享率),文章被分享对于增加关注是很重要。...绘制准确性随超参变化曲线 plot(borutaConfirmed_rf_default) 绘制贡献最高 20 个变量 (Boruta评估变量重要性跟模型自身评估重要性略有不同) dotPlot...个机器学习R包,这也太赞了吧 基于Caret和RandomForest包进行随机森林分析一般步骤 (1) Caret模型训练和调参更多参数解读(2) 基于Caret进行随机森林随机调参4种方式 机器学习第

    63930

    快速入门Tableau系列 | Chapter14入门最终章【回归分析和时间序列分析】

    回归方程如上,R值越大越好,越大越拟合越有关联性,p值越小越好,p值决定了可信程度 添加趋势线几种方法: 1、直接右键->趋势线->显示趋势线 2、分析->趋势线->显示趋势线 3、右侧分析-...在统计里通常6%或者更小3%数据可以忽略不计。 如果还不明白,我们可以通过创建参数来对比观察: 步骤:1、右键左侧空白处->创建参数->自定义参数,如下图所示 ?...42、时间序列分析 时间序列预测是Tableau内嵌周期性预测功能,它能够自动拟合预测模型,分析数据变化规律,定量预测数据,同时也可以对预测模型参数进行调整,评价预测模型精度。...步骤: ①先创建基础表:人工服务接听量->行,日期->列(下拉选择天) ? ②显示初步预测:右键图中空白处->预测->显示预测 ?...③对预测曲线进行编辑:右键->预测->预测选项 ? 但是如果真的选择用零填充缺少值是,结果会出现很大不同,因此推荐补全原数据。

    1.6K10

    生信代码:机器学习-训练模型

    ,horizon选项设置每个测试集样本连续值数量。...图3.ggplot2包绘制不同年龄、工作行业与工资关系 可以看到加入不同工作行业变量后更好解释了数据分布情况,图中上端工资较高部分大多数从事是与信息业相关工作。...根据训练集中估计参数进行了标准化,因此标准偏差不等于1,但是希望它们会接近1。...变换之后分布较处理之前更像正态分布钟形曲线,在0值处有大量分布,在正态Q-Q图显示正态分布理论分位数与样本分位数关系也可以体现,左下角数据不在理想45º斜线上。...・应用于测试集时必须使用在训练集中估计参数,测试集转换可能使不完美的。

    1.4K21

    R分类器性能评价:图形方法

    <- FP/N ACC <- (sum(TN) + sum(TP))/sum(confusion) ERR <- (sum(FN) + sum(FP))/sum(confusion) 很多时候,我们关心正例分类精确与否...ROC和AUC 对于关注于正例情况,ROC(Receiver Operating Characteristic)是很常用一种图形评价方法。 ROC曲线使用了上面定义两种比率,灵敏度和误警率。...如果取一组阈值,把对每个阈值计算得到sensitivity和1-specicity绘制在图中,就得到ROC曲线。ROC曲线表示在尽量少误判基础上,尽可能多判出正例个体。...4.ROCR包 图形方法(特别是ROC)是在机器学习/数据挖掘中用来评价模型重要方法。在R当中,有多个package可用来绘制相应图形。...绘制提升曲线 plot(performance(pre, "lift", "rpp"), main = "LIFT CURVE", colorize = T) RDaim包和pROC包也可以绘制

    1.2K100

    Facebook 数据预测工具 Prophet 有何优势?用贝叶斯推理一探究竟

    Prophet把时间序列预测问题转变成了一个曲线拟合练习(exercise)。在这个曲线,因变量是增长、周期和holiday总体表现。...用拉普拉斯分布(Laplace distribution)模拟比率调整变量,位置参数(location parameter)设定为0。...知道这一点非常有意义:这表明,在全球范围内,大气化学物质含量并不是以周为周期变化;另外,年数据也显示出北半球植被对二氧化碳含量影响:夏天过后含量降低,冬天过后含量升高。...Prophet能够通过调整转折点平滑参数自动探测到转折点。研究者把转折点平滑参数设为0.1,而不是默认0.05。这可使预测结果更灵活,更少平滑,但也容易显示噪点。...总结 以上概率程序报告展示了Prophet在贝叶斯算法实践效果,结果发现: 开发者和数据员们能通过概率编程语言(例如Stan和pymc3),容易地量化所有结果概率值,而不仅仅是选出最有可能性那一个

    2K60

    R语言进行支持向量机回归SVR和网格搜索超参数优化|附代码数据

    Matlab建立SVM,KNN和朴素贝叶斯模型分类绘制ROC曲线 01 02 03 04 第1步:在R中进行简单线性回归 下面是CSV格式相同数据,我把它保存在regression.csv...我们现在可以用R显示数据并拟合直线。...如果该函数检测到数据是分类(如果变量是R一个因子),它将自动选择SVM。 代码画出了下面的图。 这一次预测结果接近于真实数值 ! 让我们计算一下支持向量回归模型RMSE。...第四步:调整支持向量回归模型 为了提高支持向量回归性能,我们将需要为模型选择最佳参数。 在我们之前例子,我们进行了ε-回归,我们没有为ε(ϵ)设置任何值,但它默认值是0.1。 ...我们可以把我们两个模型都可视化。在下图中,第一个SVR模型是红色,而调整SVR模型是蓝色。 我希望你喜欢这个关于用R支持向量回归介绍。你可以查看原文得到本教程源代码。

    64200

    机器学习Caret--R处理不平衡数据

    我们可以通过缸盖trainControlsampling参数,并选择"down"-向下采样(也称为向下采样)。其余部分与上述模型设置相同。...image.png 2.1 ROC曲线 # Build custom AUC function to extract AUC # from the caret model object test_roc...针对机器学习数据不平衡问题,建议更多PR(Precision-Recall曲线),而非ROC曲线,如果采用ROC曲线来作为评价指标,很容易因为AUC值高而忽略实际对少两样本效果其实并不理想情况。...我们可以使用RPRROC包来计算5个模型精确查全率曲线面积area under the precision-recall curve (AUPRC)。...上面的代码显示了在有不平衡类情况下,使用一个敏感分类性能指标(AUPRC)。

    85820

    ML Mastery 博客文章翻译(二)20220116 更新

    包 使用 Caret R 包比较模型并选择最佳方案 在 R 中比较机器学习算法 R 凸优化 使用可视化更好地理解你在 R 数据(今天你可以使用 10 个秘籍) 将 Caret R 包用于数据可视化...使用描述性统计更好地理解你 R 数据 如何用 R 评估机器学习算法 使用 caret 包选择特征 在 R 中保存并最终确定您机器学习模型 如何在 R 开始机器学习(一个周末内获得结果) 如何使用...Caret 包估计 R 模型准确率 如何在 R 入门机器学习算法 如何在 R 中加载机器学习数据 如何将 R 用于机器学习 R 线性分类 R 线性回归 R 机器学习数据集(你现在可以使用...R 非线性回归 R 惩罚回归 通过预处理为机器学习准备好数据 R 超快速成班(面向开发者) R 机器学习迷你课程 R 机器学习回顾 抽查 R 机器学习算法(下一个项目要尝试算法) 调整...R 机器学习算法(随机森林案例研究) 使用 Caret调整机器学习模型 将 R 用于机器学习 什么是 R Machine Learning Mastery Weka 教程 Weka 机器学习迷你课程

    4.4K30
    领券