翻译自 How Knowledge Graphs Make Data More Useful to Organizations 。更多链接查看原文。
说到人工智能技术,人们首先会联想到深度学习、机器学习技术;谈到人工智能应用,人们很可能会马上想起语音助理、自动驾驶等等,不过,在AIWorld 2017世界人工智能大会上,百度副总裁、AI技术平台体系(AIG)总负责人王海峰却没有讲这些,这次他聊的是知识图谱。 虽然你可能说不出知识图谱的具体定义,但其实每天都在使用它。当你在百度搜索时,搜索结果右侧的联想,就来自于知识图谱技术的应用;你问百度某个字怎么念,答案也来自知识图谱的应用;你和度秘聊天,问他詹姆斯和科比谁厉害、都取得了哪些成就等等,背后都是知识图谱
Gartner 在《2023 年人工智能技术成熟度曲线》报告中,建议企业可以考虑采取以下行动来开启知识图谱:
竹间科技创始人兼CEO简仁贤曾在世界人工智能大会上发表了一篇题为《认知智能赋能企业转型》的演讲,重点探讨了认知智能的基石——知识图谱,阐述了知识图谱的定义、优势等,接着围绕产业界极重视的大规模落地问题,结合具体例证及经验心得,描绘了跨越众多行业的不同应用。以下为竹间科技创始人简仁贤先生演讲内容的精彩节选。
二者展示的信息量是差不多的,但右边这种看起来更加直观。而且,随着文本篇幅的增长,这种优势会体现得更加明显。
知识图谱是一种基于图的结构化知识表示方式.如何构造大规模高质量的知识图谱, 是研究和实践面临的一个重要问题.提出了一种基于互联网群体智能的协同式知识图谱构造方法.该方法的核心是一个持续运行的回路, 其中包含自由探索、自动融合、主动反馈3个活动.在自由探索活动中, 每一参与者独立进行知识图谱的构造活动.在自动融合活动中, 所有参与者的个体知识图谱被实时融合在一起, 形成群体知识图谱.在主动反馈活动中, 支撑环境根据每一参与者的个体知识图谱和当前时刻的群体知识图谱, 向该参与者推荐特定的知识图谱片段信息, 以提高其构造知识图谱的效率.针对这3个活动, 建立了一种层次式的个体知识图谱表示机制, 提出了一种以最小化广义熵为目标的个体知识图谱融合算法, 设计了情境无关和情境相关两种类型的信息反馈方式.为了验证所提方法及关键技术的可行性, 设计并实施了3种类型的实验: 仅包含结构信息的仿真图融合实验、大规模真实知识图谱的融合实验, 以及真实知识图谱的协同式构造实验.实验结果表明, 该知识图谱融合算法能够有效利用知识图谱的结构信息以及节点的语义信息, 形成高质量的知识图谱融合方案; 基于“探索-融合-反馈”回路的协同方法能够提升群体构造知识图谱的规模和个体构造知识图谱的效率, 并展现出较好的群体规模可扩展性.
来源:专知本文为书籍分享,建议阅读5分钟本书是在实践中从企业关系数据库设计和构建知识图谱的指南。 这本书是在实践中从企业关系数据库设计和构建知识图谱的指南。它提出了一个原则性框架,其核心是连接关系数据库和知识图谱的映射模式、组织中负责知识图谱的角色,以及将数据和人员组合在一起的过程。本书的内容适用于使用属性图或RDF图技术构建的知识图谱。知识图谱实现了创建大规模集成知识和数据的智能系统的愿景。科技巨头已经采用知识图谱作为下一代企业数据和元数据管理、搜索、推荐、分析、智能代理等的基础。我们现在发现,越来越多
知识图谱(knowledge graph)⼀度被专家称为“AI皇冠上的明珠”,因为知识图谱技术是⼈⼯智能技术⽅向中的重要⼀环。它不仅可以为其他⼈⼯智能应⽤提供⽀持,如⾃然语⾔处理、推荐系统等,更可以帮助⼈⼯智能系统⾃主构建和增⻓知识库,提升计算机的理解和分析能⼒,实现“认知智能”的⽬标。Gartner预测,到2025年,知识图谱技术将应⽤于80%的数据分析,⽽2021年这⼀⽐例仅为10%。 最近爆⽕的ChatGPT也是⾃然语⾔处理和理解领域的⼀个重要应⽤,虽然ChatGPT在⽣成和理解⾃然语⾔⽅⾯表现出⾊,但它的知识表⽰和推理能⼒有限,⽆法直接获取和处理结构化知识。因此,知识图谱可以为ChatGPT提供丰富的结构化知识,以增强其对话⽣成和理解的能⼒,进⽽提升对话系统的智能⽔平。
2016 年起,人工智能成为中国开发者重点关注的技术领域,以深度学习驱动的计算机视觉、自然语言处理、语音相关技术成为渗透最广的三个 AI 技术领域。然而,在这样的背景下,AI 仍是一个非常前沿的学科,对于中国开发者而言有很多需要克服的障碍,首当其冲的就是算法成熟度问题。此外,不同领域不同产业的 AI 应用场景复杂度与日俱增,给很多开发者树立了天然门槛。
“知识就是力量”我们耳熟能详,但培根的这句话其实还有后半句“更重要的是运用知识的技能”。对于人工智能来说,知识图谱就是其如何对知识进行运用的技能体现。在金融领域,如何运用这一技能更好地理解客户需求,提高业务效率和客户满意度,同时进行风险管理?招商银行给出了他们的答案。 作者 | 李金龙、贺瑶函、郑桂东 出品 | 新程序员 知识图谱是一种用于描述实体、属性和它们之间关系的结构化语义网络,通常以图形模型的形式呈现。知识图谱可以帮助机器理解信息,并支持自然语言处理、搜索引擎优化等领域的发展。应用在招商银行的业务场
来源:专知本文为论文,建议阅读5分钟我们介绍一种用于疾病关系提取和分类的多模式方法REMAP。 疾病知识图谱是一种连接、组织和访问有关疾病的不同信息的方式,对人工智能(AI)有许多好处。为了创建知识图谱,需要以疾病概念之间关系的形式从多模态数据集中提取知识,并对概念和关系类型进行规范化。我们介绍一种用于疾病关系提取和分类的多模式方法REMAP。REMAP机器学习方法将局部、不完全知识图谱和医学语言数据集嵌入到紧凑的潜向量空间中,然后对齐多模态嵌入以提取最佳疾病关系。应用REMAP方法构建了一个疾病知识图谱
2012年谷歌首次提出“知识图谱”这个词,由此知识图谱在工业界也出现得越来越多,对于知识图谱以及相关概念的理解确实也是比较绕。自己在研究大数据独角兽Palantir之后开始接触知识图谱,也算对其有了一定了解,这里从三个角度总结一下怎么去理解知识图谱。
本项目利用知识图谱、深度学习技术,为企业及个人构建企业知识库,从而实现集知识管理、知识发现、知识服务等功能于一身的企业深度智能运营和运维平台,为企业提供知识化、数字化和智能化的管理服务,致力于帮助传统中小企业解决构建自身专业知识库的构建和管理问题,通过开箱即用、人机智能交互的方式提高企业的运营、运维的效率。促进我国对人工智能,知识库领域的核心技术能力,极大推进了人工智能“三步走”战略。
边策 发自 凹非寺 量子位 报道 | 公众号 QbitAI 训练一个简易AI对话交互式机器人需要什么? 一篇文档+3分钟足矣。 在今年的世界人工智能大会(WAIC)上,我算是见识到了。整个开发过程没有用到一句代码。 先上传一篇Word格式文档: 不到3分钟的时间里,一个简易AI客服快速生成,然后你就可以和“她”聊天了: 这是一家提供对话AI平台的公司的最新产品:输入文档便可让AI自动生成知识图谱,知其然更知其所以然,成为一个真正掌握知识的AI。 而且这家公司的CEO还撂下“狠话”:图灵测试不重要。
在当前大数据行业中, 随着算法的升级, 特别是机器学习的加入,“找规律”式的算法所带来的“红利”正在逐渐地消失,进而需要一种可以对数据进行更深一层挖掘的方式,这种新的方式就是知识图谱。 下面我们来聊一下知识图谱以及知识图谱在达观数据中的实践。 NO.1 知识图谱和 Neo4j 浅析 什么是知识图谱 知识图谱(Knowledge Graph)是一种用点来代替实体,用边代替实体之间关系的一种语义网络。通俗来说,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到
[1] TOC: 图数据科学助力精准预测,引领人工智能实现跨越发展 [2] Neo4j社区专家jennifer翻译整理: http://neo4j.com.cn/topic/629094b65698652d139c776a
知识图谱是下一代可信人工智能领域的关键技术组成之一。围绕知识的归纳抽取、演绎推理等处理与分析过程,诸多关键问题逐步被攻克,大幅推动了机器认知技术的发展。在网络空间安全领域,防御技术的智能化升级也亟需成熟、有效的网络空间安全领域知识图谱(以下简称为安全知识图谱)技术体系,为应对强对抗、高动态环境下的攻防博弈提供知识要素与推理智能支撑。为了归纳总结安全知识图谱的关键技术研究进展,本文将尝试通过技术概述的方式,尝试回答以下几个问题,期望为读者较成体系化的安全知识图谱研究现状总结。
知识图谱是近几年来一个蛮热的词,被认为是“认知智能领域核心技术之一”,“人工智能四大领域之一”等等。甚至有了不谈知识图谱不足以号称新技术的趋势。
12月14日,YOCSEF将在中科院计算所举办“知识图谱”专题探索班,邀请自然语言处理、数据库、知识工程和机器学习领域重量级的专家做报告,让参会者在了解学科专题基础的同时,掌握本领域最新技术动态,了解未来技术趋势。
本课程从知识图谱的历史由来开展,讲述知识图谱与人工智能的关系与现状;知识图谱辐射至各行业领域的应用;在知识图谱关键技术概念与工具的实践应用中,本课程也会讲解知识图谱的构建经验;以及达观在各行业领域系统中的产品开发和系统应用。
👆点击“博文视点Broadview”,获取更多书讯 在企业数字化、智能化转型的研发、生产、供应、销售、服务等诸多场景中,如何融合数据与专家知识,协同驱动业绩增长是一个多方关注,且难以解决的难题。 比如: 如何干预用户认知?企业应如何对针对不同用户群体,制定合适的北极星指标,生成并选择最优的策略,在不同场景中对用户群体进行干预,引导用户的认知变化,带来活跃与付费的业绩增长? 如何融合多方知识?企业应如何将业务需求知识、场景事理知识、用户、商品等业务目标知识进行关联与聚合,并被用户洞察分析、标签生产、数据平台
在自然语言处理和知识图谱中,实体抽取、NER是一个基本任务,也是产业化应用NLP 和知识图谱的关键技术之一。BERT是一个大规模预训练模型,它通过精心设计的掩码语言模型(Masked Language Model,MLM)来模拟人类对语言的认知,并对数十亿个词所组成的语料进行预训练而形成强大的基础语义,形成了效果卓绝的模型。通过 BERT来进行实体抽取、NER的方法是当前在NLP和知识图谱的产业化应用中最常用的方法,是效果与成本权衡下的最佳选择。本文详细讲解使用BERT来进行实体抽取,看完本文就会用当前工业界最佳的模型了。
👆点击“博文视点Broadview”,获取更多书讯 《梦华录》是最近一段时间讨论度颇高的一部电视剧,豆瓣评分一度高达8.8分,是近些年来评分较高的一部古装影视剧。其制作相对精良,画面精美,主要人物的性格特色明显,角色鲜明。并且,这部剧的内容本身当属“披着古装的现代都市剧”,许多情节都能引起人们的共鸣。 不过,今天我们不是来聊剧情的,而是想借这部剧来谈谈知识图谱。从有意思的事情中学习,才能高效地学为所用嘛! 众所周知,知识图谱是由实体和关系组成的网状结构的知识表示。 最新的研究表明,人脑就是通过知识与知识
前几天,谷歌发布了一个全新的书籍搜索产品:“Talk to Books”,用户可以通过对话的方式得到一本书籍的推荐,比如输入:“What is thebest programming language?”(什么是最好的编程语言?),就会被推荐《C Programming for Arduino 》。这个产品是典型的知识图谱技术的应用,它让搜索引擎可以理解用户的问题和每一本书的内容,进而进行精准匹配——就像有人在豆瓣给你荐书一样。事实上,知识图谱仍旧在驱动着已有20多年历史的搜索引擎进化。
人工智能(Artificial Intelligence,AI)是一种通过计算机模拟人类智能的技术,其应用范围越来越广泛。知识图谱(Knowledge Graph,KG)则是人工智能技术中的重要组成部分,它是一种结构化的、语义化的知识表示方式,能够帮助计算机理解和处理人类语言。
AI 科技评论按:现在的市场环境下,企业正面临着竞争逐渐加剧、人力成本增加、人员流动率加快等挑战。而随着企业经历了信息化的成熟阶段,沉淀了大量的数据,大型的企业都开始了数字化转型,它们利用前沿的技术、海量的外部数据以及内部积累的业务数据上下游的关联客户,将数据转化为专家的经验知识,从而提高工作效率和产品销量,并增强产品的用户体验。而知识图谱,则在企业的数字化转型中扮演了重要的作用。
知识图谱是一种用图模型来描述知识和建模世界万物之间关联关系的技术方法。本文研究的是爱奇艺奇搜知识图谱的构建流程与应用场景,了解这一文娱行业知识图谱是如何帮助用户精确找到想要的内容、回答用户问题、以及理解用户搜索意图的。
人工智能的发展分为三个阶段——计算智能、感知智能和认知智能。简要来讲,计算智能即快速计算、记忆和存储能力,可以应用于空间搜索、数值优化和数字模拟;感知智能即视觉、听觉等感知能力,当下热门的语音识别、图像识别、视频处理便属于感知智能的典型应用,商汤科技、云从科技等AI四小龙是视觉领域的头部玩家;认知智能是指在数据结构化处理的基础上,理解数据之间的关系和逻辑,并在理解的基础上进行分析和决策,认知智能包括理解、分析、决策三个环节。
👆点击“博文视点Broadview”,获取更多书讯 有位朋友说,程序员的工作就是消灭自己的职业。 这么说或许是有些危险耸听了,不过随着近期ChatGPT的爆火,可以预见未来的程序员可能的确需要有更强的研究开发能力才能有更强的竞争力! 面对ChatGPT带来的冲击,了解其背后的核心技术,才能在AI浪潮中狂飙! 简单说,ChatGPT是通过预训练大语言模型,配以RLHF(Reinforcement Learning from Human Feedback,RLHF,人类反馈强化学习)开发出来的AIGC产品,
人工智能正逐步从感知智能迈向认知智能,其终极目标是让机器具备类似人类的思维逻辑和认识能力,特别是理解、归纳和应用知识的能力,而知识图谱在这里面起到了非常关键的作用。 所以,本期和大家分享5本知识图谱经典畅销著作和一场线上交流活动,希望能够帮助大家更加系统深入地了解这个领域,将其炉火纯青地运用到实践中! 知 识 图 谱 认真读一本书 1 book 《知识图谱:概念与技术》 简介:本书是一本系统介绍知识图谱概念、技术与实践的书籍。全书共5篇,由16 章构成,力求涵盖知识图谱相关的基本概念与关键技术。“基
在人工智能应用层出不穷的今天,作为软件从业者,我们都非常关注如何在自己研发的应用中使用人工智能技术,以提高软件的智能化水平。
导读:近日,清华大学计算机系教授、系副主任,智谱·AI 首席科学家唐杰在 MEET 2021 智能未来大会上作了题为《认知图谱——人工智能的下一个瑰宝》的精彩演讲。
神秘的硅谷大数据挖掘公司 Palantir 是国内众多创业公司看齐的标杆,其业务是为政府和金融领域的大客户提供数据分析服务,帮助客户作出判断,甚至“预知未来”,它已于近期寻求 IPO,估值在 360 亿美元到 410 亿美元之间。
话接上文《图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index》 同大家简单介绍过 LLM 和图、知识图谱相关的结合,现在我来和大家分享下最新的成果。毕竟,从 GPT-3 开始展现出超出预期的“理解能力“开始,我一直在做 Graph + LLM 技术组合、互补的研究、探索和分享,截止到现在 NebulaGraph 已经在 LlamaIndex 与 Langchain 项目做出了不少领先的贡献。
近年来,随着大家对高级认知能力的积极探索,知识图谱因为表达能力强,扩展性好,并能兼顾人类认知与机器自动处理,引起了学术界、工业界以及政府部门的高度关注。
News 新闻 3月29日,复旦大学计算机学院教授、知识工厂实验室创始人、国内最早从事知识图谱研究的学者之一肖仰华博士受聘担任达观数据高级顾问,进一步增强达观数据在文本智能处理领域的技术攻坚力量,共同
随着全球数字经济的蓬勃发展,网络安全与物联网、工业互联网、云计算、5G 等多种场景和技术的融合极大地改变了网络安全防护体系。如何打造智能化的网络安全防护成为了学术界和工业界的热点。基于人工智能的安全运营技术方案(AISecOps)将大幅提升威胁检测、风险评估、自动化响应等关键运营环节的处理效率,大幅减少对专家经验的依赖,助力网络安全运营产业的技术升级。近年来,知识图谱技术得到了迅速发展,本文目的在于探讨智能的安全运营技术中知识图谱技术应该发挥何种作用。
【引子】 “海内存知己,天涯若比邻”, 这是石头兄弟推荐给我的一篇关于语义网的综述性文章,刊载于《美国计算机学会通讯》第64卷第2期——“A Review of the Semantic Web Field”(https://cacm.acm.org/magazines/2021/2/250085-a-review-of-the-semantic-web-field/fulltext),作者是Pascal Hitzler。老码农认真研读,颇有收获,编译成文。
作为一位老码农,我在这里整理总结了一些针对大模型应用的设计方法和架构模式,试图应对和解决大模型应用实现中的一些挑战,如成本问题、延迟问题以及生成的不准确性等。
自然语言理解(NLP)素有“人工智能皇冠上的明珠”盛誉,这也意味着语言与知识等认知层面的技术突破将进一步促进AI深入发展。
👆点击“博文视点Broadview”,获取更多书讯 认知的高度决定了创造价值的高度。 企业在从创办、发展、竞争、成功到衰亡的全生命周期中,会面临复杂多样的决策场景。 然而,时代演变产生的海量、分散、实时的信息,仅靠人类个体是难以高效、准确地感知、认知和决策的。 因此,企业需要通过大数据与人工智能技术,提升对业务的智能分析与决策能力,以此提升在快速、复杂的博弈场景中的竞争力。 那么如何运用人工智能技术增强企业的认知智能呢? 在企业营销服务、设备生产运维的场景中,知识图谱与认知智能技术可以通过数据知识聚合、
知识图谱最早由谷歌发布,为了提升搜索引擎返回答案的质量以及用户查询的效率,在知识图谱辅助下,搜索引擎可以洞察到用户查询背后的一个语义信息,然后返回更为精准结构化的信息,从而更大可能的去满足用户的一个查询需求。
“ I’m sorry. I can’t do that, Dave.” 这是经典科幻电影《2001: A Space Odyssey》里HAL 9000机器人说的一句话,浓缩了人类对终极人工智能的憧憬。让机器学会说这样简单一句话,需要机器具备情感认知、自我认识以及对世界的认识,来辅助机器处理接收到的各种信息,了解信息背后的意思,从而生成自己的决策。而这些认知模块的基础,都需要机器具备知识学习组织推理的能力,知识图谱就是为实现这些目标而生。
大家好,我是本公众号的主持人,美团技术团队的程序员鼓励师美美。今天是感恩节,我们特别感谢读者朋友们的一路相伴,感恩有你。文末还有我们的感恩福利呦,欢迎领取~
当前人工智能正在经历从感知智能到认知智能的重要发展阶段。认知是人们获取和应用知识的过程,因此,作为人类对客观世界认知的一种表现形式,知识图谱是认知智能研究不可或缺的组成部分。
此文内容取自肖仰华教授在华为、CCF等场合所做报告,完整内容见书籍《知识图谱:概念与技术》的第15章《知识图谱实践》。
目前金融机构的主流玩法有四种:1. 投资银行和卖方研究尝试自动报告生成,2. 金融智能搜索;3. 公募、私募基金在通过人工智能辅助量化交易;4. 财富管理公司在探索智能投顾方向。 人工智能如何辅助量化交易 量化交易从很早开始就运用机器进行辅助工作,分析师通过编写简单函数,设计一些指标,观察数据分布,而这些仅仅把机器当做一个运算器来使用。直到近些年机器学习的崛起,数据可以快速海量地进行分析、拟合、预测,人们逐渐把人工智能与量化交易联系得愈发紧密,甚至可以说人工智能的3个子领域(机器学习,自然语言处理,知识图
本期会议邀请到来自百度等头部企业的代表,来自清华大学的研究人员,以及来自维智科技、河溓海平等时空AI明星创业企业的技术负责人,一起深入探讨时空知识图谱在构建与行业应用落地所面临的机遇和挑战,并进一步了解时空知识图谱的技术发展,以及对应的相关解决方案。3月16日,欢迎报名! 为工程师提供顶级交流平台 CCF TF第96期 主题 知识图谱赋能时空AI 2023年3月16日 19:00-21:00 长按识别或扫码报名 报名链接:https://conf.ccf.org.cn/TF96 时空人工智能(Spati
领取专属 10元无门槛券
手把手带您无忧上云