group1 = rep(gl(2, 5, labels = c("a", "b")), 2),
双变量数据可视化可能对于我们比较简单, 但是如果变量是三个或者更多,怎么在一幅图一起显示呢?今天我们就来讨论这个问题,解决方案有两种。
在美学映射那一节中,当我们需要把大于两个变量映射到图形中时,x轴和y轴就已经不够用了,需要通过形状和颜色等可区分的形式来代表新增的变量,但是一味的在一张图中增加多种映射会导致图上的信息密度过高,可读性差,这时分面的作用就体现出来了。
R具有强大的统计计算功能和便捷的数据可视化系统。目前R主要支持四套图形系统:基础图形(base)、网格图形(grid)、lattice图形和ggplot2。其中ggplot2凭借强大的语法特性和优雅的图形外观,逐渐成为R中数据可视化的主流选择。
今天向大家介绍一个绘制序列标识图的方法,这样更直观的展示测序数据的情况,让我们的数据更容易分析,gglogo是基于ggplot2绘制的。
今天就说下ggplot在绘制多图时候的一些骚操作。R里面的ggplot绘图很强大,有时候一张图可能满足不了我们的需求,需要分组展示,同时放在同一个Panel内。这时候ggplot里面的(facet_wrap() and facet_grid())[https://www.r-graph-gallery.com/ggplot2-package.html]就提供了极大的便利。 本文主要介绍:
今天介绍关于直方图的美化技巧! 数据集仍然使用上一节使用到的有关钻石的数据信息。 data(diamonds) set.seed(42) small <- diamonds[sample(nrow(
参见:https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/#prep(挑选的翻译了全文,并结合了一些自己的经验)
ggplot2的默认分面功能功能不够强大,支持的自定义参数也比较少,今天介绍的这个包可以对分面进行超多改头换面的操作!
ggplot2默认没有引号,第一行为全局设置,以下分别为分图层。全局设置后一定要由+,每个分图层可以单独设置映射aes
ggplot2可以用来创建优雅的图形,由于它的灵活,简洁和一致的接口,可以提供美丽、可直接用来发表的图形,吸引了许多用户,特别是科研领域的用户。ggplot2使用grid包来提供一系列的高水平的函数,并将其延伸为图形语法,即独立指定绘图组件,并将它们组合起来,以构建我们想要的任何图形显示。图形语法包含6个主要成分:data, transformations, element, scales, guide和 coordinate system。图层图形语法源于多层数据构建图形的想法。它定义了下表中的图形组分:data, aesthetic mappings, statistical transformations, geometric objects, position adjustment, scales, coordinate system 和 faceting(数据、几何映射、统计变换、几何对象、位置调整、比例、坐标和面)。数据、几何映射、统计变换、几何对象、位置调整形成一个图层,一个图可以有多个图层。
Python的绘图库(如matplotlib和seaborn)也允许用户创建优雅的图形,但是与R中的ggplot2的简单、可读和层次方法相比,它缺乏实现图形语法的标准化语法,这使得用Python实现它更加困难。。
哈喽,我是学习生物信息学的阿榜!非常感谢您能够点击进来查看我的笔记。我致力于通过笔记,将生物信息学知识分享给更多的人。如果有任何纰漏或谬误,欢迎指正。让我们一起加油,一起学习进步鸭? 这份思维导图可以
一般分页绘图可以用par(nfrow()),但是这一方法在ggplot2中并不适用,ggplot2使用facet把数据按分类进行画图。
日历图,在环境与生态指标的动态监测中应用普遍,特别适用于显示不同时间段的指标情况。比如污染物中重金属含量、空气中PM2.5变化情况。在金融行业中检测股票收盘价、回测信号等指标中也很常见。生物医药领域的血糖或血压日记录值,新型冠状病毒的逐日确诊数量等等。通过时间分布的日历图动态监测数据,以弥补普通线图的不足。
画图的思维:1.我的数据适合什么样的图?2.搜画图代码 3.仿制示例数据 4.套代码,调细节
<GEOM_FUNCTION>(mapping =aes(<MAPPINGS>))
R有几种不同的系统用来产生图形,但ggplot2是最优雅而多变的那一种。ggplot2实现了图形语法,一种描述和构建图形的逻辑系统。通过ggplo2,我们能够快速学习,多处应用。
标度负责控制映射后图形属性的显示方式。具体形式上来看是图例和坐标刻度。Scale和Mapping是紧密相关的概念。
ps:高级绘图函数是指可以绘制出一张图,而低价绘图函数是指在图中添加的“零部件”,低级绘图函数必须在高级绘图函数的基础上才能绘制,二者都是base包的内容
facet_wrap()和facet_grid()两个函数可以根据分类数据绘制一系列的子图,包括矩阵分面图、行分面图、列分面图。
*ggplot2中通过不同的geom函数生成图层,从前往后覆盖,因此需要考虑函数书写的顺序
这里介绍一下grafify这个包,虽然它只能做基础绘图和基础分析,比如说柱状图、点图和ANOVA,
添加其他变量的一种方法是aesthetics。 另一种对分类变量特别有用的方法是将绘图分割为多个子图,每个子图显示一个数据子集。要通过单个变量来划分您的绘图,请使用facet_wrap()。 facet_wrap()的第一个参数应该是一个公式,你用〜后跟一个变量名创建(这里“formula”是R中数据结构的名称,而不是“equation”的同义词)。 传递给facet_wrap()的变量应该是离散的。
ggeconodist是开发者受Economist杂志独特风格的启发,开发的一款与普通绘制的箱型图不同风格的R包。
我们平常的日历也可以当作可视化工具,适用于显示不同时间段,以及活动事件的组织情况。时间段通常以不同单位显示,例如日、周、月和年。今天我们最常用的日历形式是公历,每个月份的月历由7个垂直列组成(代表每周7天),如图所示。
年初的时候我好像打算对ggplot2进行一个教程,后来因为其他事情耽搁了,今天打开以往的git日志,才发现有这么一个坑(ggplot2初探),虽然现在绘图的包层出不穷,但是ggplot真的是一个基础的绘图包了。
能制作这样图表的工具很多, 我比较喜欢ggplot2+AI, 当然,或许有高手可以独立使用ggplot2调整全部图表细节,不过,我做不到。我只能做到的是可以绘制出几乎全部的图表的雏形,而且我个人觉得,把ggplot2学习到这个程度就足够了。
gggenes是ggplot2的扩展包,用于绘制基因结构图、多物种基因比较图的很好玩的工具。
这一个部分一共三篇,学会了基本上你的ggplot 就达到ggplot 界小学二年级的水平了吧~
Step1. R包和数据加载、主题设置 测试数据在: 链接:https://pan.baidu.com/s/1MuMgMZZCcdO-IGS7_ysfkQ?pwd=1234 提取码:1234 libr
柱状图绘制 柱状图也是较为常见的一种数据展示方式,可以展示基因的表达量,也可以展示GO富集分析结果,基因注释数据等。 常规矩阵柱状图绘制 有如下4个基因在5组样品中的表达值 data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5 a;2.6;2.9;2.1;2.0;2.2 b;20.8;9.8;7.0;3.7;19.2 c;10.0;11.0;9.2;12.4;9.6 d;9;3.3;10.3;11.1;10" data <- read.table(text=data_ori
facet_grid()形成由行和列面化变量定义的面板矩阵。当有两个离散变量,并且这些变量的所有组合存在于数据中时,它是最有用的。如果只有一个具有多个级别的变量,请尝试facet_wrap()。
之前的ggplot2入门实践篇已经更新告一段落,也已经做了归总分类分享给大家。 最近翻看突然发现少了一个知识点,就是分面中没有讲填充多边形分面的应用,虽然其理念跟其他的常用图表类型一致。 但是鉴于多边形填充本身就比较复杂,再加上分面肯定能把大部分小伙伴儿绕晕,这里还是亲自实践一篇案例详细讲解一下实际用法。 如果你还不懂如何使用ggplot2制作数据地图的话,你可以参考以下序列文件: 地图部分(ggplot2) 你想要的地图素材资源,我都帮你整理好了~ 一篇文章教你搞定JSON素材,从此告别SHP时代~ 大道
ggplot2 包提供了一个基于全面而连贯的语法的绘图系统。它弥补了 R 中创建图形缺乏一致性的缺点,使得用户可以创建有创新性的、新颖的图形类型。ggplot2 是 R 语言绘图一个重要特性和优势。通过 ggplot2,只需少量的代码,就可以绘制出高质量的图形,满足出版需要。ggplot2 语法简介,逻辑清晰,功能强大,可以快速上手。在 R 语言中自成一派,目前也有越来越多的绘图包基于 ggplot2 进行二次开发,一般都是以“gg”开头,例如 ggpubr,ggtree,ggvis,ggtree,ggstatsplot 等。
ggtext让ggplot2图像也可以使用html、markdown及css语法,丰富了ggplot2文本的表现力。
因为之前自己已经学习过R语言基础的一些内容,包括:数据类型与数据结构、函数与R包、R语言作图基础等,今天的学习内容主要是《R数据科学》这本书的第一章——使用ggplot2进行数据可视化。
在BBC数据团队开发了一个R包,以ggplot2内部风格创建可发布出版物的图形,并且使新手更容易到R创建图形。 例如:
ggplot2是R中用于绘图的高级程序包,它将绘图视为一种映射—数学空问到图形元索空间的映射,例如将不同的数值映射为不同的颜色或其他图形属性。ggplot2在画图时就是采用了类似photoshop的图层设计方式,允许用户一步步构建图形,并且便于图层的修改。
geomnet是一个基于ggplot2可视化图形和网络的R包,它使用sna包计算网络布局,并且包含了使用ggplot2绘制圆的geom_circle函数。
ggplot2是由Hadley Wickham创建的一个十分强大的可视化R包。按照ggplot2的绘图理念,Plot(图)= data(数据集)+ Aesthetics(美学映射)+ Geometry(几何对象)。本文将从ggplot2的八大基本要素逐步介绍这个强大的R可视化包。
gggenes 是一款基于ggplot2开发的R包,可以很方便的画出下图所示的基因结构图。
四种常见的作图系统中,ggplot2包基于一种全面的图形“语法”,提供了一种全新的图形创建方法。这个包极大地扩展了R绘图的范畴,提高了图形的质量。它通过全面一致的语法帮助我们将多变量的数据集进行可视化,并且很容易生成R自带图形难以生成的图形。
再比如前面笔记两次单细胞差异分析后的结果进行相关性散点图绘制提到的两次差异分析结果的对比,就使用了ggpubr包的ggscatter函数绘制了相关性散点图:
赵小编之前介绍过完整中国,及区域地图的画法。如:使用 ggplot2 绘制单个和多个省份地图;R 语言绘制十段线地图,给特定省份填色;今天小编将介绍如何比较各个省份及其区县的详细数据,本文参考《R 语言数据可视化之美》[1]。
Lines: horizontal, vertical, and specified by slope and intercept.
领取专属 10元无门槛券
手把手带您无忧上云