首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

日志易:金融支付行业日志大数据分析案例解读

本文讲述某支付公司采用日志易后,通过日志大数据实现业务深度分析及风险控制的实践经验。...; 2、开发访问日志的权限管理。...为了更好发挥移动支付的便捷,支付公司对时效性,可靠性的要求很高,而这才是使用日志大数据分析平台的深层次原因,日志易帮支付公司解决了最根本的行业需求,在可靠性方面展现了产品的价值。...日志易作为国内首家海量日志分析企业,一直致力于开发一款配置方便、功能强大的日志管理工具,以高品质的产品为金融行业用户信息化建设搭建高可靠平台,共同面对数字浪潮中更多的未知与挑战,实现支付企业对日志分析管理产品高效...更多内容,欢迎关注公众号:日志

2.8K20

大数据分析大数据分析方法 及 相关工具

基于此,大数据分析方法理论有哪些呢? ?...大数据分析的五个基本方面 PredictiveAnalyticCapabilities (预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断...AnalyticVisualizations ( 可视化 分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。...SemanticEngines (语义引擎) 我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。...挖掘 与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。

3.7K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大数据分析系统

    概念、分类 数据分析系统的主要功能是从众多外部系统中,采集相关的业务数据,集中存储到系统的数据库中。...按照数据分析的时效性,我们一般会把大数据分析系统分为实时、离线两种类型。实时数据分析系统在时效上有强烈的保证,数据是实时流动的,相应的一些分析情况也是实时的。...而离线数据分析系统更多的是对已有的数据进行分析,时效性上的要求会相对低一点。时效性的标准都是以人可以接受来划分的。 2. 网站流量日志据分析系统 2.1....背景知识—Web访问日志 访问日志指用户访问网站时的所有访问、浏览、点击行为数据。比如点击了哪一个链接,打开了哪一个页面,采用了哪个搜索项、总体会话时间等。而所有这些信息都可通过网站日志保存下来。...日志的生成渠道分为以下两种: 一是:web服务器软件(httpd、nginx、tomcat)自带的日志记录功能,如Nginx的access.log日志; 二是:自定义采集用户行为数据,通过在页面嵌入自定义的

    3.4K20

    何为大数据分析

    基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 1. 可视化分析。...大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了...大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 4. 语义引擎。...大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。...大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

    2K20

    大数据分析流程

    一、为什么要做一份数据报告 你是一个在校学生,上着自己喜欢或不喜欢的课,闲来无事,你打开知乎,看到了数据分析话题,你下定决心要成为一个数据分析师,你搞来一堆学习资料和在线课程,看完之后自信满满,准备去投简历...然后发现不清楚各种工具和模型的适用范围,也不知道数据报告需要包括哪些内容,面试的感觉就是一问三不知…… 你是一个工作了一段时间的白领,你觉得现在这份工作不适合你,你下班以后去逛知乎,在上面看到很多人在说大数据代表未来...,数据分析师是21世纪最性感的十大职业之一……你激动了,你也要成为数据分析师,你利用空余时间补上了统计知识,学了分析工具,然后发现自己目前的工作跟数据分析没啥关系,觉得没有相关经验没公司要你…… 这些问题的根源是什么...一句话可以概括:你没有办法在最短的时间内向招聘者展示,你能够胜任数据分析这项工作。...保证数据的安全性,不对外泄露公司的任何非公开数据,是数据分析师的基本职业道德。

    3.3K41

    大数据分析技术方案

    一.目标 现在已经进入大数据时代, 数据是无缝连接网络世界与物理世界的DNA。发现数据DNA、重组数据DNA是人类不断认识、探索、实践大数据的持续过程。...大数据分析可以有效地促进营销,个性化医疗治病,帮助学生提高成绩,利于老师提高教学水平,还可以用于教学,许多产品可以用到大数据技术,如量化分析金融产品等。...必须加强大数据技术的研究并实际应用.这里对目前最流行和最实用的用户画像技术进行讲解,并分析大数据分析的常用算法。 二.用户画像 1....可视化分析系统提供系统监控,权限多级管理,多维数据分析,等等功能,还支持自服务式报表设计和数据分析。...2.逻辑回归算法构建过程 根据用户的行为日志,建立用户的品牌偏好,并预测他们在将来一个月内对品牌下商品的购买行为。

    1.7K20

    大数据分析那点事

    重复数据处理: 5.2 缺失数据处理 5.3 数据抽取 ---- 一、什么是数据分析据分析是指数据分析师根据分析目的,用适当的分析方法及工具,对数据进行处理与分析,提取有价值的信息,形成有效结论的过程...三、数据分析方法论 数据分析方法论与数据分析法的区别:数据分析方法论主要是用来指导数据分析师进行一次完整的数据分析,它更多的是指数据分析思路,比如从哪些方面展开的数据分析,即从宏观角度来指导如何进行数据分析...:什么是数据分析方法论?...数据分析方法论的几个作用: 可以帮助我们理清楚分析的思路,确保分析过程的体系化 可以看出问题之间的关系 为数据分析的开展指引方向和确保分析结果的有效准确合理性 常用的数据分析方法论 常见的营销方面的理论模型有...四、常用的数据分析工具 工欲善其事,必先利其器。熟练掌握一个数据分析工具可以事半功倍的解决问题。

    1.3K10

    大数据之日志采集点滴

    细细地品味、仔细地思考,今天我们来看一下越来越流行的日志服务在数据中的作用。 一 为什么采集日志 ? 提到大数据,第一步总是数据的采集,有了原始数据,才有接下来的存储、处理、分析、应用、展示。...当行为检测探针的JavaScript代码为有效触发时,将日志数据源源不断地送给公有云中的日志服务。日志服务原则上不作业务处理,仅进行简单日志保存。 ?...为提升日志的真实有效性,日志服务可以提供一些增值服务,例如非法日志的恶意攻击,实现较复杂。 对于手机端的APP程序,一般会将探针内嵌到SDK中,将日志进行汇聚后再送到日志服务。...三 日志服务分流处理 ? 大家一定会联系到,日志服务器的压力很大,成千上万的客户端都会向日志服务中送数据,如何解决,我们再继续分析。...一方面,我们可以进行分流处理,将关键、非关键的日志送入不同的日志服务器。 另一方面,对同种类的日志可以通过Hash等方式选择日志服务器,尽量让更多的日志服务分担任务。

    62420

    大数据开发:Kafka日志结构

    Kafka作为大数据技术生态的重要组件,尤其是实时流数据处理场景下,作为分布式生产/消费系统,得到广泛的重用。而Kafka在数据生产和消费上,日志是主要的场景。...今天的大数据开发学习分享,我们就来讲讲kafka日志结构的基础。 image.png Kafka消息是以主题为单位,主题之间相互独立。...日志文件和索引文件与磁盘上的物理存储文件相对应。 Kafka将日志文件封装为一个FileMessageSet对象,将两个索引文件封装为OffsetIndex和TimeIndex对象。...同时Kafka提供了根据时间来切分日志段的机制,即使数据文件大小没有达到log.segment.bytes设置的阈值,但达到了log.roll.ms或是log.roll.hours设置的阈值,同样会创建新的日志段...关于大数据学习,Kafka日志结构,以上就为大家做了基本的讲解了。Kafka在实时消息流的生产和消费上,其稳定性和可靠性,依赖于存储,对于日志结构这部分,建议大家一定要理解透彻。

    48930

    大数据Python:3大数据分析工具

    在这篇文章中,我们将讨论三个令人敬畏的大数据Python工具,以使用生产数据提高您的大数据编程技能。...我们将使用的Python数据是在几天的时间内从该网站获得的实际生产日志。这些数据在技术上并不是大数据,因为它的大小只有大约2 Mb,但它对我们的目的来说非常有用。...正如它的网站所述,Pandas是一个开源的Python数据分析库。 让我们启动IPython并对我们的示例数据进行一些操作。...这是来自Apache Spark项目的大数据分析库。 PySpark为我们提供了许多用于在Python中分析大数据的功能。它带有自己的shell,您可以从命令行运行它。...例如,我们可以按时间映射日志条目以获得具有两列的DataFrame:一分钟内的日志数和当前分钟: +------------------+---+ | 2018-08-01 17:10 | 4 | +-

    4.2K20

    图解大数据 | 大数据分析挖掘-Spark初步

    tutorials/84 本文地址:http://www.showmeai.tech/article-detail/173 声明:版权所有,转载请联系平台与作者并注明出处 ---- 1.Spark是什么 学习或做大数据开发的同学...Apache Spark是一种用于大数据工作负载的分布式开源处理系统。它使用内存中缓存和优化的查询执行方式,可针对任何规模的数据进行快速分析查询。...Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量的廉价硬件之上,形成集群。...Apache Spark 已经成为最受欢迎的大数据分布式处理框架之一。...由加州大学伯克利分校的AMPLabs开发,作为Berkeley Data Analytics Stack(BDAS)的一部分,当下由大数据公司Databricks保驾护航,更是Apache旗下的顶级项目

    2K41

    大数据分析:基于Hadoop的数据分析平台

    大数据时代的带来,一个明显的变化就是全样本数据分析,面对TB/PB级及以上的数据规模,Hadoop始终占据优势。今天的大数据学习分享,我们来聊聊基于Hadoop的数据分析平台。...Hadoop系统的可伸缩性、健壮性、计算性能以及低成本,使得它事实上已成为当前互联网企业主流的大数据分析平台。 基于Hadoop平台,可以根据实际的业务需求,来进行数据系统的规划和设计。...针对不同的具体需求,采用不同的数据分析架构来解决实际问题。 按照数据分析的实时性,分为实时数据分析和离线数据分析两种。...对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。...主流的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求

    1.9K20
    领券