TensorFlow入门(九)使用 tf.train.Saver()保存模型 这个例子介绍了怎么保存模型和重新导入模型,像这样的例子到处都有,但是有一点需要明白,就是:你要导入某个变量的值,这个变量名称...TensorFlow入门(十)【迁移学习】往一个已经保存好的模型添加新的变量并进行微调 在迁移学习中,通常我们已经训练好一个模型,现在需要修改模型的部分结构,用于我们的新任务。...比如: 在一个图片分类任务中,我们使用别人训练好的网络来提取特征,但是我们的分类数目和原模型不同,这样我们只能取到 fc 层,后面的分类层需要重新写。这样我们就需要添加新的变量。...那么这些新加入的变量必须得初始化才能使用。可是我们又不能使用 ‘tf.global_variables_initializer()’ 来初始化,否则原本训练好的模型就没用了。...Tensorflow入门(十一) 【模型联合】如何利用tf.train.saver()把多个预训练好的模型联合起来fine-tune 实际上把多个模型联合起来训练这种方式用得并不多,就个人经验来说,多个模型融合训练并没有单模型训好以后再做融合效果好
当前移动端的三大框架(Caffe2、TensorFlow Lite、Core ML)均使用 offline 方式,该方式可在无需网络连接的情况下确保用户数据的私密性。...模块如下: TensorFlow Model: 存储在硬盘上已经训练好的 TensorFlow 模型 TensorFlow Lite Converter: 将模型转换为 TensorFlow Lite...苹果在 Core ML 开发文档中如此介绍: 使用 Core ML,你可以将训练好的模型整合进自己开发的 APP 中。...优势 Bender 支持选择 Tensorflow、 Keras、Caffe 等框架来运行已训练的模型,无论是在将训练好的模型 freeze,还是将权重导至 files(官方表示该支持特性即将到来) 可直接从支持的平台导入一个...frozen graph 或者重新定义神经网络结构并加载权重。
本文的内容分为以下几节: 函数和神经网络中的“非重要性”概念 修剪训练好的神经网络 代码片段和不同模型之间的性能比较 现代修剪技术 最后的想法和结论 (我们将讨论的代码段将基于TensorFlow模型优化工具包...如果您想进一步追求模型优化,那么这些想法将值得进一步探索。 一些现代修剪方法 让我们从以下问题开始本节: 当我们重新训练修剪后的网络时,如果未修剪的权重初始化为它们的原始参数大小会怎样?...现在,在优化环境中响应良好的权重(意味着它们比其他权重传播得更远)实际上最终落入了中奖彩票。因此,为了使它很好地进行(重新)训练,我们将权重初始化为最大,这样优化过程会很好地吸引他们。...仅探讨了如果在训练之前将权重重新初始化为最大初始大小,则修剪后的网络的性能如何。...它提出了权重反卷积后作为修剪后初始化网络权重的一种潜在方法。之前,我们以最大的初始量来初始化它们。权重反卷积的作用是将剩余的权重倒带到原始网络训练中的某个位置。
问题1:模型中断后继续训练出错在有些时候我们需要保存训练好的参数为path文件,以防不测,下次可以直接加载该轮epoch的参数接着训练,但是在重新加载时发现类似报错:size mismatch for...64,现在准备在另外的机器上面续训的时候某个超参数设置的是32,导致了size mismatch解决方案:查看size mismatch的模型部分,将超参数改回来。...问题原因:暂时未知,推测是续训时模型加载的问题,也有可能是保存和加载的方式问题解决方案:统一保存和加载的方式,当我采用以下方式时,貌似避免了这个问题:模型的保存:torch.save(netG.state_dict...,其中的一些函数已经在较新的版本中被移除或迁移到其他模块中。...,即没有更多的输入可供读取。
然而,作者观察到,当前的迁移学习方法通常无法关注与任务相关的特征。在这项工作中,作者探索了重新聚焦模型注意力以进行迁移学习。...TOAST还优于完全微调的Alpaca和Vicuna模型,用于指令遵循语言生成。这些观察加强了作者的观点,即重新聚焦注意力是迁移学习的关键,并为该领域的未来探索提供了启发。...4 TOAST中的注意力重新聚焦分析 图3 从相似的角度,我们来解释来为什么TOAST比其他基准模型性能优越。...这种方法的优点是对大多数方法适用,效果好;缺点是难以求解,容易发生过拟合。 基于模型的迁移学习是指利用源领域已经训练好的模型或参数来初始化或约束目标领域的模型,从而提高目标领域学习效果的方法。...6.算法实例详解 下面,我将根据不同的模型分类,分别提供对应的代码详解。 6.1实例迁移 直接重用源域数据,可以对源域样本进行重新加权,使其分布适应目标域。
采用的方式一是精简模型,既可以节省内存空间,也可以加快计算速度;二是加快框架的执行速度,影响框架执行速度主要有两方面的因素,即模型的复杂度和每一步的计算速度。...模型压缩 模型压缩是指在不丢失有用信息的前提下,缩减参数量以减少存储空间,提高其计算和存储效率,或按照一定的算法对数据进行重新组织,减少数据的冗余和存储的空间的一种技术方法。...在加载模型后运算时转换回32位浮点数,这样已有的浮点计算代码无需改动即可正常运行。 量化的另一个动机是降低预测过程需要的计算资源。这在嵌入式和移动端非常有意义,能够更快地运行模型,功耗更低。...图7 TensorFlow下模型量化的过程 图7中左侧是原始的Relu操作,输入和输出均是浮点数。...例如,我们使用TensorFlow官方网站提供的预训练好的Inception V3模型在此花卉数据集上进行训练。
在训练好的Inception-v3模型中,因为将瓶颈层的输出再通过一个单层的全连接层神经网络可以很好的区分1000种类别的图像,所以有理由认为瓶颈层输出的借点向量可以作为任何图像的一个新的单层全连接神经网络处理新的分类问题...layer,对于某一层中的每个节点,Dropout技术使得该节点以一定的概率p不参与到训练的过程中(即前向传导时不参与计算,bp计算时不参与梯度更新)。...3、权重初始化 权重初始化常采用随机生成方法以避免网络单元的对称性,但仍过于太过粗糙,根据目前最新的实验结果,权重的均匀分布初始化是一个最优的选择,同时均匀分布的函数范围由单元的连接数确定,即越多连接权重相对越小...Tensorflow的 word2vec程序中初始化权重的例子,权重初始值从一个均匀分布中随机采样: 4、学习速率 学习速率是重要的超参数之一,它是在收敛速度和是否收敛之间的权衡参数。...5、选择优化算法 传统的随机梯度下降算法虽然适用很广,但并不高效,最近出现很多更灵活的优化算法,例如Adagrad、RMSProp等,可在迭代优化的过程中自适应的调节学习速率等超参数,效果更佳。
结构化剪枝 结构化剪枝是一种从神经网络中删除整块滤波器、通道、神经元甚至整个层级(如图2(b)所示)的剪枝方法,也被称为组剪枝或块剪枝,它能对剪枝后的模型重新构造具有规律结构的紧凑模型,并不需要使用稀疏卷积库等专门的硬件和软件...基于动态稀疏训练的方法:以随机初始化的稀疏网络而不是密集网络作为输入模型,并在训练过程中反复剪枝和重新增长权重以搜索更好的稀疏架构。包括 ThiNet、软过滤剪枝和动态网络手术。...彩票假设(LTH):是神经网络剪枝领域中具有影响力的假设之一。它给定预训练神经网络,基于权重幅度,迭代移除一定比例的权重,剪枝后剩余权重用原始初始化参数重新训练,以保持原始网络准确性。...该假设挑战预先训练的权重必须用于重新训练的观念,推测稠密网络中存在可独立训练的稀疏子网络。 其他基于分数的方法:选取剪枝候选的最直接方法是基于它们的范数进行评估。...该方法对预训练好的模型进行剪枝,无需重新训练,且精度损失几乎无。对于十亿参数模型,后训练剪枝方法更具吸引力,因为剪枝后重新训练成本高昂。
,这种方法通常被称为迁移学习,它的好处是不用再重头开始设计与训练一个全新的网络,而是基于已经训练好的网络模型,在其基础上进行参数与知识迁移,只需要很少量的计算资源开销与训练时间就可以实现对新任务的支持。...要理解迁移学习的整个过程就是要搞清楚下面三件事: 迁移学习迁移什么 迁移学习是怎么迁移的 迁移学习什么时候使用 迁移什么 在预训练模型中存在各种特征数据与权重信息、有些是与分类识别的对象本身关联比较紧密的特征数据与权重信息...层随机初始化之后开始训练这两个全新的网络(B3B与A3B),他们想通过这个实验证明、如果B3B与A3B跟之前训练好的网络B有同样的识别准确率就说明自迁移网络B3B与迁移网络A3B的前三层网络特征是共性特征信息.../models 在实际使用中我们把预训练的网络称为base-network,把要迁移的前n层复制到一个到目标网络(target network),然后随机初始化目标网络的余下各层、开始训练进行反向传播、...不冻结前n层、全程参与训练不断调整它们的参数,实现更好的网络性能这种方法称为迁移学习+fine-tuning 迁移学习使用 在tensorflow中通过tensorflow object detection
Keras 函数式 API 利用函数式 API,可以轻易地重用训练好的模型:可以将任何模型看作是一个层,然后通过传递一个张量来调用它。注意,在调用模型时,您不仅重用模型的结构,还重用了它的权重。...模型的主要输入将是新闻标题本身,即一系列词语,但是为了增添趣味,我们的模型还添加了其他的辅助输入来接收额外的数据,例如新闻标题的发布的时间等。该模型也将通过两个损失函数进行监督学习。...model.set_weights(weights): 从 Nympy array 中为模型设置权重。列表中的数组必须与 get_weights() 返回的权重具有相同的尺寸。...你可以通过以下代码,从 JSON 字符串中重新实例化相同的模型(带有重新初始化的权重): from keras.models import model_from_json json_string =...你可以通过以下代码,从 YAML 字符串中重新实例化相同的模型(带有重新初始化的权重): from keras.models import model_from_yaml yaml_string =
导出深度学习模型到应用平台(★★) 许多深度学习框架支持将训练好的模型导出为 C++ 可以读取的格式,如 ONNX、TensorFlow Lite、Caffe2 等。...这样可以在不重新训练模型的情况下,在 C++ 代码中加载和运行模型。...ONNX文件不仅存储了神经网络模型的权重,还存储了模型的结构信息、网络中各层的输入输出等一些信息。...MediaPipe 的主要用例是使用推理模型和其他可重用组件对应用机器学习管道进行快速原型设计。...AI模型部署平台 AI 模型部署是将训练好的 AI 模型应用到实际场景中的过程。
Razavian等人2014年发表的论文*表明,从ImageNet ILSVRC的训练模型中,简单地提取网络权重的初级特征,应用在多种图像分类任务中,都取得了与ImageNet网络相同或几乎相同的分类效果...然而,在实际应用中,用一个预训练模型的网络权重来初始化新网络的权重,仍然是不错的方法。在这种情况下,我们有足够的数据和信心对整个网络进行微调。...代码3 设置了标志位include_top = False,去除ImageNet网络的全连接层权重,因为这是针对ImageNet竞赛的1000种日常对象预先训练好的网络权重。...因为如果不固定相关层,随机初始化网络权重会导致较大的梯度更新,进一步可能会破坏卷积层中的学习权重。我们应用迁移学习,训练得到稳定的最后全连接层后,可以再通过微调的方法训练更多的网络层。...代码8 模型预测 现在我们通过keras.model保存训练好的网络模型,通过修改predict.py中的predict函数后,只需要输入本地图像文件的路径或是图像的URL链接即可实现模型预测。
Caffe的特点 -易用性:Caffe的模型与相应优化都是以文本形式而非代码形式给出, Caffe给出了模型的定义、最优化设置以及预训练的权重,方便快速使用; -速度快:能够运行最棒的模型与海量的数据;...TensorFlow 是谷歌发布的第二代机器学习系统。据谷歌宣称,在部分基准测试中,TensorFlow的处理速度比第一代的DistBelief加快了2倍之多。...,即张量(Tensors)。...这种灵活的架构可以让使用者在多样化的将计算部署在台式机、服务器或者移动设备的一个或多个CPU上,而且无需重写代码;同时任一基于梯度的机器学习算法均可够借鉴TensorFlow的自动分化(Auto-differentiation...); -可在CPU 和 GPU 上无缝运行。
权重的重要性 权重在模型中的作用类似于人类大脑中的神经连接强度。不同的权重组合让模型能够识别和分类各种复杂的模式。...例如,在图像识别任务中,模型通过调整权重来识别图像中的边缘、形状和颜色;在自然语言处理任务中,模型通过权重来理解单词之间的关系和上下文。 权重的初始化 在训练模型之前,权重需要被初始化。...权重的存储和加载 训练好的模型权重通常会被存储下来,以便在不同的应用中复用。例如,在深度学习框架如TensorFlow或PyTorch中,模型权重可以保存为文件,并在需要时加载。...这使得我们可以在不同的项目和环境中快速应用训练好的模型。 权重在迁移学习中的应用 迁移学习是一种通过使用预训练模型权重来加速新模型训练的方法。...通过使用在大规模数据集上训练好的模型权重,可以显著提高新任务的训练效率和效果。例如,使用在ImageNet上训练好的模型权重,可以在其他图像识别任务中取得优秀的表现。
使用 Xavier 进行初始化;tf.layer 会自动设置权重系数(weight)和偏置项(bias)! ? c....PyTorch 中的神经网络——定义新的模型 Pytorch 中的模块(Module)其实是一个神经网络层(neural net layer),需要注意它的输入和输出都是变量;模块(Module)中包含着权重...把我们的整体模型定义成一个单一的模块: ? 2. 用初始化程序来设置两个子模块(一个父模块可以包含子模块) ? 3....注意:使用带有 torchvision 的预先训练好的模型(pretrained model)将会更加简单易行。 F. Torch 和 pytorch 的简单对比 ?...Tensorflow 和 Caffe2 可在移动端使用。 ?
该网络的核心思想是密集连接,即每一层都接收其前面所有层的输出作为输入。DenseNet121是该家族中的一个特定模型,其中121表示网络的总层数。...这种密集连接方式促进了特征的重用。 参数效率:由于特征在网络中得以重复使用,DenseNet相较于其他深度网络模型(如VGG或ResNet)通常需要更少的参数来达到相同(或更好)的性能。...二、在TensorFlow中的应用 在TensorFlow(特别是TensorFlow 2.x版本)中使用DenseNet121模型非常方便,因为该模型已经作为预训练模型的一部分集成在TensorFlow...模型: # 预训练权重和全连接层 model = DenseNet121(weights='imagenet', include_top=True) # 预训练权重但无全连接层(用于特征提取) model...(提供包括数据集、训练预测代码、训练好的模型、WEB网页端界面、远程安装调试部署)。
权重和偏差一开始是随机初始化的,然后不断输入样本进行训练;结果与输入的类别进行比较,并根据学习率来进行权值和偏差的更新。如果幸运的话,这些值最终会收敛。...Github中的obtain-data.sh用来下载数据集,with-keras/train.py用来训练模型并把训练后的权重输出到C++文件中。...然后我们C++重新写了这个模型(flower.cpp ),不使用任何神经学习库。weights_ 或biases_为开头的变量是从Keras中导出的训练好的值。它们的定义在weights.cpp中。...例如,convolve 函数被四个层使用(每个层的权重,输入形状,偏差都不同)。能这样重用是因为每一层的处理是流水线而不是状态转移。 我们把图像作为输入传入第一层,随后获得函数返回值传入下一层。...模型中的层 每个图层函数都需要一个张量作为输入。训练好的层还需要包含层权重和偏差的张量。 卷积层(Convolution layer) 这里显示了其核心代码,其余部分在convolve函数中实现。
这时候就要精简模型的结构了,一般是对训好的大模型进行剪枝,或者参考现有的比如MobileNetV2(https://arxiv.org/abs/1801.04381)和ShuffleNetV2(https...://arxiv.org/abs/1807.11164)等轻量级的网络重新设计自己的网络模块。...对训练好的网络做量化,在实践中尝试过TensorRT的后训练量化算法,在一些任务上效果还不错。...在实验中我是简化了融合batchnorm的流程,要是完全按照论文中的实现要复杂很多,而且是基于已经训好的网络去做模拟量化实验的,不基于预训练模型训不起来,可能还有坑要踩。...实验结果 用VGG在Cifar10上做了下实验,效果还可以,因为是为了验证量化训练的有效性,所以训Cifar10的时候没怎么调过参,数据增强也没做,训出来的模型精确度最高只有0.877,比最好的结果0.93
领取专属 10元无门槛券
手把手带您无忧上云