首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【动手学深度学习】深入浅出深度学习之PyTorch基础

将本节中的条件语句X == Y更改为X Y,然后看看你可以得到什么样的张量。...2.用pandas处理缺失的数据时,我们可根据情况选择用插值法和删除法。 2.5 练习 1.创建包含更多行和列的原始数据集。....sum(axis=0) nan_max_id = nan_numer.idxmax() data1 = data1.drop([nan_max_id], axis=1) data1 输出结果: 3.将预处理后的数据集转换为张量格式...2.给出两个矩阵 和 ,证明“它们转置的和”等于“它们和的转置”,即 。 3.给定任意方阵 , 总是对称的吗?为什么? 4.本节中定义了形状((2,3,4))的张量X。len(X)的输出结果是什么?...# 会报错,因为进行一次backward之后,计算图中的中间变量在计算完后就会被释放,之后无法进行二次backward了, # 如果想进行第二次backward,可以将retain_graph置为True

40210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pytorch - 张量转换拼接

    目录 张量转换为 numpy 数组 numpy 转换为张量 标量张量和数字的转换 张量拼接操作 张量索引操作 张量转换为 numpy 数组 使用 Tensor.numpy 函数可以将张量转换为 ndarray...) print(data_numpy) numpy 转换为张量 使用 from_numpy 可以将 ndarray 数组转换为 Tensor,默认共享内存,使用 copy 函数避免共享。...使用 torch.tensor 可以将 ndarray 数组转换为 Tensor,默认不共享内存。...⚔️张量的拼接方式有两种:CAT、STACK CAT方法是将两个张量按照某一维度进行拼接(类似于积木拼接) STACK方法是将两个张量按照顺序垂直堆叠起来。...的行数据 print(data[data[:, 2] > 5]) # data[:, 2] > 5返回了按照这个规则的一列布尔值,再套入到data求出来 类似于pandas求所有行的某一维度>5的所有行

    16210

    PyTorch使用------张量的类型转换,拼接操作,索引操作,形状操作

    形状操作如重塑、转置等,能够灵活调整张量的维度,确保数据符合算法或网络层的输入要求,从而优化计算效率和性能。 在学习张量三大操作之前,我们先来简单熟悉一下张量的类型转换。 1....在本小节,我们主要学习如何将 numpy 数组和 PyTorch Tensor 的转化方法. 1.1 张量转换为 numpy 数组 使用 Tensor.numpy 函数可以将张量转换为 ndarray...将张量转换为 numpy 数组 def test01(): data_tensor = torch.tensor([2, 3, 4]) # 使用张量对象中的 numpy 函数进行转换...(data_tensor) print(data_numpy) 1.2 numpy 转换为张量 使用 from_numpy 可以将 ndarray 数组转换为 Tensor,默认共享内存,使用...使用 from_numpy 函数 def test01(): data_numpy = np.array([2, 3, 4]) # 将 numpy 数组转换为张量类型 # 1.

    6610

    【动手学深度学习】笔记一

    函数 功能 name.view(-1,m) 将name这个Tensor转换为m列的张量,行数根据列数自动确定,-1是一种标志 name.view(n,-1) 将name这个Tensor转换为n行的张量,...列数根据行数自动确定,-1是一种标志 name.view(x,y) 将name这个m行n列的张量转换为x行y列的张量 因为上面的原因,所以可以用clone克隆一个副本,然后对副本进行变换。...将标量张量转换为普通变量 import torch x = torch.tensor(1.123456) y = x.item() print(x) #tensor(2.2469) print(y...(前提是两个Tensor要满足可以通过复制某些行或列会变成一样形状的;如:[2,4]和[1,4]可以实现广播机制;但[2,3]和[1,4]无法实现) 运算的内存开销 小注释: 索引操作不会新开辟一个内存地址...函数 功能 name1 = name.numpy() 将name转换为numpy数组并存储到name1中 name1 = torch.from_numpy(name) 将name转换为Tensor数组并存储到

    1K20

    NumPy和Pandas中的广播

    Numpy中的广播 广播(Broadcast)是 numpy 对不同维度(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。 “维度”指的是特征或数据列。...的广播机制,Numpy会尝试将数组广播到另一个操作数。...广播通过扩充较小数组中的元素来适配较大数组的形状,它的本制是就是张量自动扩展,也就是说根据规则来进行的张量复制。...先看一个不对的例子: mapping = {"male":0, "female":1} df.applymap(mapping.get) 也就是说每一列都会被操作,我们看到所有与“Sex”变量无关的其他单元格都被替换为...总结 在本文中,我们介绍了Numpy的广播机制和Pandas中的一些广播的函数,并使用泰坦尼克的数据集演示了pandas上常用的转换/广播操作。

    1.2K20

    昇思25天学习打卡营第二天|张量

    张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。...张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似,下面介绍其中几种操作。...Tensor转换为NumPy 与张量创建相同,使用 Tensor.asnumpy() 将Tensor变量转换为NumPy变量。...NumPy转换为Tensor 使用Tensor()将NumPy变量转换为Tensor变量。...两者都可以轻松地将NumPy数组转换为各自的张量格式,并提供了与NumPy相似的操作接口。 然而,MindSpore在处理大规模数据时可能会显示出更高的效率,特别是当利用其稀疏张量结构时。

    7610

    放弃深度学习?我承认是因为线性代数

    在 NumPy 这个 python 库中,有 24 种新的基本数据类型来描述不同类型的标量。...矩阵 矩阵是由数字组成的矩形阵列,是二阶张量的一个例子。如果 m 和 n 均为正整数,即 m, n ∈ ℕ,则矩阵包含 m 行 n 列,共 m*n 个数字。 完整的矩阵可写为: ?...将所有矩阵的元素缩写为以下形式通常很有用。 ? 在 Python 语言中,我们使用 numpy 库来帮助我们创建 n 维数组。这些数组基本上都是矩阵,我们使用矩阵方法通过列表,来定义一个矩阵。...如果这些矩阵的形状不相同,则程序会报错,无法相加。 ? 矩阵-标量相加 将给定的标量加到给定矩阵的所有元素。 ? 矩阵-标量相乘 用给定的标量乘以给定矩阵的所有元素。 ?...矩阵转置 通过矩阵转置,你可以将行向量转换为列向量,反之亦然。 A=[aij]mxn AT=[aji]n×m ? ? 张量 张量的更一般的实体封装了标量、向量和矩阵。

    1.9K20

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    我们尝试将列A转换为ndarray进行运算,但是会出现类型不匹配的错误。...解决方法要解决DataFrame格式数据与ndarray格式数据不一致导致的无法运算问题,我们可以通过将DataFrame的某一列转换为ndarray并重新赋值给新的变量,然后再进行运算。...= series_a + 1上述代码中,我们创建了一个新的变量​​series_a​​,将列A转换为ndarray并使用pd.Series()将其转换为pandas的Series数据格式。...通过将DataFrame的某一列转换为ndarray,并使用pd.Series()将其转换为pandas的Series数据格式,可以避免格式不一致的错误。...要解决DataFrame格式数据与ndarray格式数据不一致导致无法运算的问题,可以通过将DataFrame的某一列转换为ndarray并重新赋值给新的变量,然后再进行运算。

    53420

    python转置矩阵代码_python 矩阵转置

    T python 字符串如何变成矩阵进行矩阵转置 如输入一串“w,t,w;t,u,u;t,u,u”将其变成矩阵进行转置操作 需CSS布局HTML小编今天和大家分享: 你需要转置一个二维数组,将行列互换...简单的很 import numpy as npimport randombefore = np.array([[random.randint(10, 99) for i in range(5)] for...j in range(5)])result = before.Tprint(result) 如何用python实现行列互换 用excel的话建议用pandas import pandas as pd...df_T.to_excel(‘要 matlab里如何实现N行一列的矩阵变换成一行N列的矩阵 就是说A=1 2 3 4 如何使用函数将A变成 B=1 2 3 4 5 有两种方法可以实现: 转置矩阵: B...= A’; 通用方法:reshape()函数 示例如下: 说明:reshape(A,m,n) 表示将矩阵A变换为m行n列的矩阵,通常用于矩阵形状的改变,例如下面代码将原来的1行4列矩阵转换为2行2列矩阵

    5.6K50

    paddle深度学习5 向量的维度变换

    对于Tensor数据类型而言,有的时候,我们需要改变向量的形状,以满足计算要求例如:向量的变形、转置、压缩、解压等,属于基本的向量维度变换操作下面将对向量的维度变换操作进行介绍【reshape()】在numpy...,通常用于交换矩阵的行和列。...在数学上,转置操作将矩阵的行转换为列,列转换为行import paddlea=paddle.reshape(paddle.arange(1,13),(3,4))b=paddle.t(a)print(a)...print(b)通过转置,原矩阵a从一个3*4矩阵变换成了4*3矩阵并且每一行的元素被换到了每一列即0轴和1轴进行了对调【transpose()】transpose()方法可以用于更加高维度的向量转置import...功能:paddle.expand 会将输入张量沿着某些维度复制多次,使其形状变为目标形状。适用场景:当你需要将一个张量的形状扩展到更大的形状时,可以使用这个函数。

    8800

    pandas

    使用pandas过程中出现的问题 TOC 1.pandas无法读取excel文件:xlrd.biffh.XLRDError: Excel xlsx file; not supported 应该是xlrd...原因: writer.save()接口已经私有化,close()里面有save()会自动调用,将writer.save()替换为writer.close()即可 更细致的操作: 可以添加更多的参数,比如...生成日期去掉时分秒 import pandas as pd import numpy as np df = pd.DataFrame({ "date":pd.date_range...列中的日期转换为没有时分秒的日期 df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame

    13010

    Python中用PyTorch机器学习分类预测银行客户流失模型

    将分类列与数字列分开的基本目的是,可以将数字列中的值直接输入到神经网络中。但是,必须首先将类别列的值转换为数字类型。分类列中的值的编码部分地解决了分类列的数值转换的任务。...由于我们将使用PyTorch进行模型训练,因此需要将分类列和数值列转换为张量。 首先让我们将分类列转换为张量。在PyTorch中,可以通过numpy数组创建张量。...我们将首先将四个分类列中的数据转换为numpy数组,然后将所有列水平堆叠,如以下脚本所示: geo = dataset['Geography'].cat.codes.values......同样,我们可以将数值列转换为张量: numerical_data = np.stack([dataset[col].values for col in numerical_columns], 1)......最后一步是将输出的numpy数组转换为tensor对象。 ... 输出: tensor([1, 0, 1, 0, 0]) 现在,让我们绘制分类数据,数值数据和相应输出的形状: ...

    2.4K11

    超级攻略!PandasNumPyMatrix用于金融数据准备

    本文回顾数据分析常用模块Pandas和NumPy,回顾DataFrame、array、matrix 基本操作。...pandas pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。...移动列 # 将 Date 移动至第一列 >>> cols = list(new_df) >>> cols.insert(0, cols.pop(cols.index('Date'))) >>> cols...# Numpy 模块 >>> import numpy as np 将数据集转换为numpy # 将打开的DataFrame转换为numpy数组 >>> Open_array = np.array(dataset...由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。矩阵运算在科学计算中非常重要,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置 。

    7.3K30

    5 个PyTorch 中的处理张量的基本函数

    describe(torch.sum(x, dim=0,keepdims=True)) 如果你了解 NumPy ,可能已经注意到,对于 2D 张量,我们将行表示为维度 0,将列表示为维度 1。...torch.sum() 函数允许我们计算行和列的总和。 我们还为 keepdims 传递 True 以保留结果中的维度。通过定义 dim = 1 我们告诉函数按列折叠数组。...describe(torch.stack([x, x, x],dim = 1)) 我们可以将我们想要连接的张量作为一个张量列表传递,dim 为 1,以沿着列堆叠它。...)) 在上面的例子中,我们定义了一个 NumPy 数组然后将其转换为 float32 类型的张量。...即使矩阵的顺序相同,它仍然不会自动与另一个矩阵的转置相乘,用户必须手动定义它。 为了在反向传播时计算导数,必须能够有效地执行矩阵乘法,这就是 torch.mm () 出现的地方。

    1.9K10
    领券