CNN将一系列过滤器应用于图像的原始像素数据,以提取和学习较高级别的功能,然后模型可用于分类。CNN包含三个组成部分:
卷积层,将图像的指定数量的卷积滤波器应用。...将神经元数量和激活函数作为参数。
这些方法中的每一个都接受张量作为输入,并将转换的张量作为输出返回。这样可以轻松地将一层连接到另一层:只需从一个层创建方法获取输出,并将其作为输入提供给另一层。...例如,如果我们以5的批次向我们的模型中提供示例,features将包含3,920个值(每个图像中每个像素的一个值),并且input_layer将具有一个形状 [5, 28, 28, 1]。...同样地,如果我们以100个批次的方式提供示例,features 将包含78,400个值,并且input_layer将具有一个形状[100, 28, 28, 1]。..., pool_size=[2, 2], strides=2)
再次inputs指定输入张量,形状为 。