首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PySpark从hdfs获取词向量文件并进行word2vec

    调研后发现pyspark虽然有自己的word2vec方法,但是好像无法加载预训练txt词向量。...分词+向量化的处理预训练词向量下发到每一个worker后,下一步就是对数据进行分词和获取词向量,采用udf函数来实现以上操作:import pyspark.sql.functions as f# 定义分词以及向量化的...jieba词典的时候就会有一个问题,我怎么在pyspark上实现jieba.load_userdict()如果在pyspark里面直接使用该方法,加载的词典在执行udf的时候并没有真正的产生作用,从而导致无效加载...另外如果在udf里面直接使用该方法,会导致计算每一行dataframe的时候都去加载一次词典,导致重复加载耗时过长。...还有一些其他方法,比如将jieba作为参数传入柯里化的udf或者新建一个jieba的Tokenizer实例,作为参数传入udf或者作为全局变量等同样也不行,因为jieba中有线程锁,无法序列化。

    2.2K100

    如何使用 Apache IoTDB 中的 UDF

    本篇作者: IoTDB 社区 -- 廖兰宇 本文将概述用户使用 UDF 的大致流程,UDF 的详细使用说明请参考官网用户手册: https://iotdb.apache.org/zh/UserGuide...使用以下 SQL 语法注册 UDF CREATE FUNCTION UDF-NAME> AS UDF-CLASS-FULL-PATHNAME> (USING URI URI-STRING)?...完成注册后即可以像使用内置函数一样使用注册的 UDF 了。 2.1 注册方式示例 注册名为 example 的 UDF,以下两种注册方式任选其一即可。...放置完成后使用注册语句: CREATE FUNCTION example AS 'org.apache.iotdb.udf.UDTFExample' 2.1.2 指定 URI 准备工作: 使用该种方式注册时...使用内置函数的名字给 UDF 注册会失败。 5. 不同的 JAR 包中最好不要有全类名相同但实现功能逻辑不一样的类。

    1.3K10

    如何在Hive & Impala中使用UDF

    1.文档编写目的 本文档讲述如何开发Hive自定义函数(UDF),以及如何在Impala中使用Hive的自定义函数,通过本文档,您将学习到以下知识: 1.如何使用Java开发Hive的自定义函数 2.如何在...Hive中创建自定义函数及使用 3.如何在Impala中使用Hive的自定义函数 这篇文档将重点介绍UDF在Hive和Impala的使用,并基于以下假设: 1.集群环境正常运行 2.集群安装Hive和Impala...工具开发Hive的UDF函数,进行编译; 1.使用Intellij工具通过Maven创建一个Java工程 [8pq9p2ibi6.jpeg] 2.pom.xml文件中增加Hive包的依赖 <dependency...'; | |:----| [ygmtp2ri87.jpeg] 注意:在创建的时候如果带有数据库名,则该UDF函数只对该库生效,其它库无法使用该UDF函数。...] 4.验证永久UDF函数是否生效 [m6qtzh0dbd.jpeg] 重新打开Hive CLI能正常使用创建的UDF函数。

    5K160

    pyspark 原理、源码解析与优劣势分析(2) ---- Executor 端进程间通信和序列化

    文章大纲 Executor 端进程间通信和序列化 Pandas UDF 参考文献 系列文章: pyspark 原理、源码解析与优劣势分析(1) ---- 架构与java接口 pyspark 原理、源码解析与优劣势分析...而 对于需要使用 UDF 的情形,在 Executor 端就需要启动一个 Python worker 子进程,然后执行 UDF 的逻辑。那么 Spark 是怎样判断需要启动子进程的呢?...前面我们已经看到,PySpark 提供了基于 Arrow 的进程间通信来提高效率,那么对于用户在 Python 层的 UDF,是不是也能直接使用到这种高效的内存格式呢?...答案是肯定的,这就是 PySpark 推出的 Pandas UDF。...在 Pandas UDF 中,可以使用 Pandas 的 API 来完成计算,在易用性和性能上都得到了很大的提升。

    1.5K20

    Apache Spark 3.0.0重磅发布 —— 重要特性全面解析

    动态分区裁剪 当优化器在编译时无法识别可跳过的分区时,可以使用"动态分区裁剪",即基于运行时推断的信息来进一步进行分区裁剪。...当编译器无法做出最佳选择时,用户可以使用join hints来影响优化器以便让它选择更好的计划。...通过使用Koalas,在PySpark中,数据科学家们就不需要构建很多函数(例如,绘图支持),从而在整个集群中获得更高性能。...虽然Koalas可能是从单节点pandas代码迁移的最简单方法,但很多人仍在使用PySpark API,也意味着PySpark API也越来越受欢迎。 ?...Spark 3.0为PySpark API做了多个增强功能: 带有类型提示的新pandas API pandas UDF最初是在Spark 2.3中引入的,用于扩展PySpark中的用户定义函数,并将pandas

    2.3K20

    Apache Spark 3.0.0重磅发布 —— 重要特性全面解析

    3.jpg 动态分区裁剪 当优化器在编译时无法识别可跳过的分区时,可以使用"动态分区裁剪",即基于运行时推断的信息来进一步进行分区裁剪。...当编译器无法做出最佳选择时,用户可以使用join hints来影响优化器以便让它选择更好的计划。...通过使用Koalas,在PySpark中,数据科学家们就不需要构建很多函数(例如,绘图支持),从而在整个集群中获得更高性能。...虽然Koalas可能是从单节点pandas代码迁移的最简单方法,但很多人仍在使用PySpark API,也意味着PySpark API也越来越受欢迎。...6.jpg Spark 3.0为PySpark API做了多个增强功能: 带有类型提示的新pandas API pandas UDF最初是在Spark 2.3中引入的,用于扩展PySpark中的用户定义函数

    4.1K00
    领券