首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对于语言模型的推理问题,一步步来会更好

    今天为大家介绍的是来自Openai研究团队的一篇提高语言模型推理能力的论文。近年来,大型语言模型在进行复杂多步推理方面的能力有了显著提升。然而,即使是最先进的模型仍然经常产生逻辑错误。为了训练更可靠的模型,作者可以采用结果监督或过程监督两种方法。结果监督为最终结果提供反馈,而过程监督则为每个中间推理步骤提供反馈。考虑到训练可靠模型的重要性以及人工反馈的高成本,仔细比较这两种方法非常重要。最近的研究已经开始比较这两种方法,但仍然存在许多问题。Openai进行了关于这个问题的研究,发现对于训练模型解决具有挑战性的MATH数据集中的问题,过程监督明显优于结果监督。

    01

    运营活动质量保障:质量人的甜蜜负担

    再回答这个问题之前我们先考虑一个问题,为什么同样的产品和体验,有些品牌就可以享有更多的资源,除了运气,还需要迎合产品自身的运营规则。然而,随着业务的不断发展成熟,商业业务逐渐向重运营、重策略的模式发展,提出的需求中运营活动类需求数量也不断增多。运营活动一旦搞好了,要么会引流很多用户,也会提升品牌影响力。但是如果运营活的质量很差,被骂的声音也会更响亮了!属实的又爱又恨,运营活动因而成为了质量人最甜蜜的负担~而通过项目的积累、与其他业务的讨论共创,我们也积累了一批对运营活动类项目的测试点和对应的测试方案。下面我将从设计思路和具体内容出发介绍面对一个运营活动类项目时,如何进行测试方案设计。

    01

    【避免AI错把黑人识别为大猩猩】伯克利大学提出协同反向强化学习

    【新智元导读】 伯克利大学的研究博客最新文章介绍了AI奖励机制存在的缺陷,提出让AI学习人类价值观,价值对齐问题的重要性,以及协同强化学习的一些最近研究。 小心你给的奖励 “小心你许的愿望!”——我们都听过这句谚语。国王弥达斯的故事告诉我们,轻易许愿往往事与愿违。弥达斯是一个爱财的国王,他向酒神许愿希望得到点石成金的能力,并如愿以偿得到了点金术。最初,这很有趣,他把碰触到的一切物品都变成了黄金。但快乐很短暂,当国王拥抱自己的女儿时,女儿变成了一座金子的雕像,国王认识到自己愿望的错误。 我们人类对于实际想要什

    04

    每日论文速递 | 使用对比Reward改进RLHF

    摘要:来自人类反馈的强化学习(RLHF)是将大语言模型(LLM)与人类偏好相匹配的主流范式。然而,现有的 RLHF 在很大程度上依赖于准确、翔实的奖励模型,而奖励模型对各种来源的噪声(如人类标签错误)很脆弱、很敏感,从而使管道变得脆弱。在这项工作中,我们通过在奖励上引入惩罚项来提高奖励模型的有效性,该惩罚项被命名为contrastive rewards。我们的方法包括两个步骤:(1) 离线采样步骤,获取对提示的回应,作为计算基线;(2) 使用基线回应计算对比奖励,并将其用于近端策略优化 (PPO) 步骤。我们的研究表明,对比奖励使 LLM 能够惩罚奖励的不确定性、提高鲁棒性、鼓励改进基线、根据任务难度进行校准以及减少 PPO 中的差异。通过 GPT 和人类的评估,我们的实证结果表明,对比性奖励可以大幅提高 RLHF,而且我们的方法始终优于强基线。

    01
    领券