第一步:先将中文文本进行分词,这里使用的HanLP-汉语言处理包进行中文文本分词。
评论情况: {'android': 545 次, 'ios': 110 次, 'pc': 44 次, 'uniapp': 1 次}
kNN算法就是找到k个最相似的样本,这些样本所在的类,就是当前文档的所属的类。如下图:绿色圆圈表示你想分类的文本,其他是已知类别的样本。图中其他形状和绿色圆圈的距离代表了相似度。如果k = 3,就是取3个最相似的文本,那么1个蓝色框,2红色三角被选中,因为红色三角多,则绿色圆圈所属的类就是红色三角所在的类。如果k = 5,3个蓝色框和2个红色三角选中,那么就属于蓝色框所属于的类。kNN你也可以取多个类别,就是绿色圆圈既属于蓝色框,也属于红色三角所属的类别。
机器能跟人类交流吗?能像人类一样理解文本吗?这是大家对人工智能最初的想象。如今,NLP 技术可以充当人类和机器之间沟通的桥梁。环顾周围的生活,我们随时可以享受到 NLP 技术带来的便利,语音识别、机器翻译、问答系统等等。
之前我们通过朴素贝叶斯方法,做过英文文档的分类(传送门)。那使用中文文本,如何使用深度学习方法来进行分类了?这就是本文所讲的。首先我们来看看中文文本和英文文本的不同。 在处理英文文本时,我们使用的是TF-IDF方法,该方法当然也可以使用在中文文本中,但是我们都知道,中文的分词不像英文那样,每个词都是通过空格分开的,中文我们通过jieba来进行分词。
电子邮件的应用变的十分广泛,它给人们的生活带来了极大的方便,然而,作为其发展的副产品——垃圾邮件,却给广大用户、网络管理员和ISP(Internet服务提供者)带来了大量的麻烦。垃圾邮件问题日益严重,受到研究人员的广泛关注。垃圾邮件通常是指未经用户许可,但却被强行塞入用户邮箱的电子邮件。对于采用群发等技术的垃圾邮件,必须借助一定的技术手段进行反垃圾邮件工作。目前,反垃圾邮件技术主要包括:垃圾邮件过滤技术、邮件服务器的安全管理以及对简单邮件通信协议(SMTP)的改进研究等。
前几天星耀群有个叫【小明】的粉丝在问了一道关于Python处理文本可视化+语义分析的问题,如下图所示。
词云图,也叫文字云,是对文本中出现频率较高的“关键词”予以视觉化的展现,词云图过滤掉大量的低频低质的文本信息,使得浏览者只要一眼扫过文本就可领略文本的主旨。
大家好,又见面了,我是你们的朋友全栈君。 stop_words:设置停用词表,这样的词我们就不会统计出来(多半是虚拟词,冠词等等),需要列表结构,所以代码中定义了一个函数来处理停用词表…前言前文给
自己使用的一个接单系统,运行了多半年时间。积累的一批数据,有近万条的开发数据。就像自己分析一下,大部分是什么需求。看看能不能挖出新的商机。
当使用Python的自然语言处理库(NLTK)的时候,你可能会遇到一个LookupError的错误,错误信息中提示:"Resource [93maveraged_perceptron_tagger[0m not found"。这个错误通常出现在你尝试使用NLTK进行词性标注(part-of-speech tagging)时。这篇博客文章将向你介绍该错误的原因,以及如何通过使用NLTK Downloader来解决这个问题。
要实现中文分词功能,大家基本上都是在使用 jieba 这个库来实现,下面就看看怎样实现一个简单文本分词功能。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
#**使用“结巴”分词库进行文本分词,再结合“词云图”库,用指定的图片作为蒙版,分词出的关键字进行填充。**#**#
在 上文(http://localhost:4000/math/math-matrix/) 中我简单概括了矩阵的基本运算,并给出了两个应用实例。这篇文章我们继续谈谈向量。 向量是线性代数中的基本概念,也是机器学习的基础数据表示形式。例如计算机阅读文本的过程首先就会将文本分词,然后用向量表示[1]。这是因为向量很适合在高维空间中表达和处理。在机器学习中会接触到的诸如投影、降维的概念,都是在向量的基础上做的。
看网络上很多朋友都在用“Rwordseg”程序包进行分词练习。我也忍不住进行了一次实验。 首先,肯定是装程序包了,个人感觉是废话,纯凑字数。 如下是我进行的联系,在网上找了一篇关于范爷的专访,看看能看出来什么吧。 =========================================================================== #第一步,文本分词 require(Rwordseg) test<- readLines("E:\\FBB1.txt",encodin
之前在处理QA语料库的时候,在分词和去停止词的时候消耗时间很长,所以专门搜了一些资料针对这个问题进行了一次优化,总结如下。
Python 第三方库依照安装方式灵活性和难易程度有 3 个方法,这 3 个方法是:pip 工具安装、自定义安装、文件安装。
上周末,闲着没事就试了一个新的R中文文本分词包——jiebaR,支持Windows,支持简体及繁体中文,速度也很快,大家可以根据该包文档去学习,很容易上手!下面用R及该包对《笑傲江湖(金庸)》txt文
看网络上很多朋友都在用“Rwordseg”程序包进行分词练习。我也忍不住进行了一次实验。 首先,肯定是装程序包了,个人感觉是废话,纯凑字数。 如下是我进行的联系,在网上找了一篇关于范爷的专访,看看能看出来什么吧。 =========================================================================== #第一步,文本分词 require(Rwordseg) test<- readLines("E:\\FBB1.txt",encoding='UTF-8') #读取数据 res = test[test != " "] #读取test,且剔除test=“ ” words = unlist(lapply(X = res,FUN = segmentCN)) #分词,并调整表结构,将有相同词频的词归类 word = lapply(X = words,FUN = strsplit," ") #给每个词根据顺序赋个顺序指 v = table(unlist(word)) #重建表 v = sort(v,deceasing=T) #降序排列 v[1:100] head(v) #给每列字段赋标题 d = data.frame(word = names(v),freq = v) #更改标题 write.csv(d,"E:\\学习.csv",header = T) #导出数据,为下一步做准备 #第二部,做文本云图 require(wordcloud) dd = tail(d,150) #取数据框的最后150行数据 op = par(bg = "lightyellow") #背景为亮黄色 #rainbowLevels = rainbow((dd$freq)/(max(dd$freq) - 10)) #不知道什么意义,删除后图形无太大变化 wordcloud(dd$word, dd$freq, col = rainbow(length(d$freq))) par(op) ===================================================================================== 成图
文本预处理是指在进行自然语言处理(NLP)任务之前,对原始文本数据进行清洗、转换和标准化的过程。由于现实中的文本数据通常存在噪音、多样性和复杂性,直接使用原始文本数据进行分析和建模可能会导致结果不准确或不稳定。因此,文本预处理是NLP中非常重要的一步,它有助于提高文本数据的质量,减少数据中的干扰因素,并为后续的文本分析和挖掘任务提供更好的基础。
老师让把每一次写东西遇到的问题都记录下来,个人觉得很有用,就以此为第一篇博文吧⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄ 在写K-Means聚类时,对文本分词处理遇到去标点的问题,之前一直使用的是 .tr
1. 多种搜索方式 1.1 Query String Search:在请求URL中包括search的参数 # 语法 curl -X GET "ip:port/index_name/type_name/
有实际的需求才有行动的动力,因为一个朋友开了一家烤肉店,在大众点评上线了团购套餐,遭遇了几次中差评,朋友第一次接触这个,也不知道怎么回复和处理,于是向我寻求帮助。本人也不知道如何处理,正好最近在学R语言,于是就想到了不如通过R语言编写个简单的爬虫抓取大众点评上评论,参考其他店的回复和处理方式。爬取了数据,又可以拿来练手,做个简单的情感分析。 本文主要分以下三部分: 第一部分,编写爬虫抓取数据,主要的R包有XML包,RCurl包,readr包 第二部分,清洗数据和分词,主要的R包有stringr包,Rword
词干提取通过识别和删除词缀(例如动名词)同时保持词的根本意义,将词语简化为词干。 NLTK 的PorterStemmer实现了广泛使用的 Porter 词干算法。
github地址:https://github.com/qindongliang/hive-solr 欢迎大家fork和使用 关于这个项目的介绍,请参考散仙前面的文章: http://qindongliang.iteye.com/blog/2283862 最新更新: (1)添加了对solrcloud集群的支持 (2)修复了在反序列时对于hive中null列和空值的处理bug (3)优化了在构建索引时对于null值和空值的忽略 一些测试: 数据量:约一千二百万,8个字段,其中一个是大
实验环境:Ubuntu + eclipse + python3.5 首先(1)下载最新中文wiki语料库: wget https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 (2)由于下载之后,语料库上的编码格式会有不同,因此需要进行处理一下:借鉴了这篇文章。 http://www.crifan.com/summary_python_string_encoding_decoding_difference_
最近刚刚把垃圾文本分类做完,接着又去研究意图识别,可以看做是分类完之后的后续处理,通过这篇文章记录下自己的学习经历。
在 ES 中,全文搜索与 Analysis 部分密不可分。我们为什么能够通过一个简单的词条就搜索到整个文本?因为 Analyzer 分析器的存在,其作用简而言之就是把整个文本按照某个规则拆分成一个一个独立的字或词,然后基于此建立倒排索引。
文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。
Python深受数据科学家和数据工程师的喜爱。 本文总结2017年数据科学的Top12的Python库。 核心库1 numpy 它是最基础库,是众多Python库的依赖库。 它提供了多维数组和矩阵的丰富运算。 2 scipy 它包含线性代数、优化、统计学和数值运算等操作。 3 pandas 它是Python做数据处理的优秀工具。 它可以快速而简单地实现数据操作、数据集成和数据可视化的功能。 它提供两种数据结构:序列和数据框。 数据可视化4 matplotlib 它是Python的数据可视化基础库。 它可
最近和相似度杠上了,今天和大家分享一下周末研究的东西:SimHash。记得看到最后哟。
听说最近大家都在看《欢乐颂》,这部热剧里,女性可谓是绝对的主角,22楼5个女房客的互动好像把男性角色们的风头都抢光了;但是热门剧中又总是不能缺了言情戏的点缀。所以,《欢乐颂》到底谁和谁堪称好闺蜜、谁和谁又最为般配呢?还是让文本挖掘为你揭晓吧…… 方法 要判断两个人的关系的密切程度,可以从他们接触的频率、交流的次数入手;反映到小说上,就是两个人出现在同一场景或同一事件里的次数很多。因此在实际分析时,我们假设一个段落是一个场景,出现在这个段落里的人物,彼此之间都是有关系的。基于这个假设,我们先对原著小说进行文
Python深受数据科学家和数据工程师的喜爱。 本文总结2017年数据科学的Top12的Python库。 核心库 1 numpy 它是最基础库,是众多Python库的依赖库。 它提供了多维数组和矩阵
川普作为一个推特狂人,上台以来一共发了一万多条推特,本文爬取了川普在2020年的全部推特内容并将其绘制成了词云图。
最近在进行关键词的分析,中间涉及到对一些特殊的字符进行过滤的需求。包括带符号的(有部分还是SQL注入),并且存在一部分乱码的问题。梳理下来供后续使用。
本篇文章测试的哈工大LTP、中科院计算所NLPIR、清华大学THULAC和jieba、FoolNLTK、HanLP这六大中文分词工具是由 水...琥珀 完成的。相关测试的文章之前也看到过一些,但本篇阐述的可以说是比较详细的了。这里就分享一下给各位朋友!
那么 NLP 到底是什么?学习 NLP 能带来什么好处?
pyecharts是基于echarts的python库,能够绘制多种交互式图表,和其他可视化库不一样,pyecharts支持链式调用。
文学与创意写作一直是人类独特的表达方式,然而,随着机器学习技术的迅猛发展,其在文学领域的应用也逐渐成为一个备受关注的话题。本文将深入讨论机器学习在文学与创意写作中的应用,通过一个实例项目详细介绍部署过程,并探讨这一领域的未来发展。
除了字段类型之外,映射还可以定义一些属性,以控制字段的行为。以下是一些常见的属性:
一开始设想在相似度计算中针对于《三生三世十里桃花》和《桃花债》之间的相似度计算,但是中途突然有人工智能的阅读报告需要写。
@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府 本文实例讲述了Python自然语言处理 NLTK 库用法。分享给大家供大家参考,具体如下:
NLP中的算法复杂,应用场景多变,涉及数学、语言学、计算科学多门学科,理解起来很抽象,单靠自学、看课程难以理解晦涩难懂的逻辑。即使你已经看过很多深度学习、人工智能、自然语言处理理论知识,依然难以着手开发项目。 为此,华为云上线了Python+NLP实战营,帮助学习者掌握自然语言处理理论和应用,提升NLP相关编程能力,低门槛入门开发AI项目。重要的是,由华为专家授课教学,全程免费报名学习。 适 合 人 群 01 在校学生 ① 计算机、人工智能专业 ② 0门槛入门NLP领域知识 ③ 希望从事企业AI工程师 0
沈哥,我们有个业务,类似于“标题分词检索”,并发量非常大,大概20W次每秒,数据量不是很大,大概500W级别,而且数据不会频繁更新,平均每天更新一次,请问有什么好的方案么?
本文主要涉及的库有爬虫库requests、词频统计库collections、数据处理库numpy、结巴分词库jieba 、可视化库pyecharts等等。
在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性。
领取专属 10元无门槛券
手把手带您无忧上云