首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    MongoDB分片集群

    上一章的分析复制集解决了数据库的备份与自动故障转移,但是围绕数据库的业务中当前还有两个方面的问题变得越来越重要,一是海量数据如何存储,二是如何高效地读写海量数据。尽管复制集也可以实现读写分析,如在 primary 节点上写,在 secondary 节点上读,但在这种方式下客户端读出来的数据有可能不是最新的,因为 primary 节点到secondary 节点间的数据同步会带来一定延迟,而且这种方式也不能处理大量数据。MongoDB 从设计之初就考虑了上面所提到的两个问题,引入了分片机制,实现了海量数据的分布式存储与高效的读写分离。复制集中的每个成员是一个mongod实例,但在分片部署上,每一个片可能就是一个复制集。

    05

    快速学习-Mycat 目前有哪些功能与特性?

    答: • 支持 SQL 92 标准; • 支持 Mysql 集群,可以作为 Proxy 使用; • 支持 JDBC 连接多数据库; • 支持 NoSQL 数据库; • 支持 galera for mysql 集群,percona-cluster 或者 mariadb cluster,提供高可用性数据分片集群; • 自动故障切换,高可用性; • 支持读写分离,支持 Mysql 双主多从,以及一主多从的模式; • 支持全局表,数据自动分片到多个节点,用于高效表关联查询; • 支持独有的基于 E-R 关系的分片策略,实现了高效的表关联查询; • 支持一致性 Hash 分片,有效解决分片扩容难题; • 多平台支持,部署和实施简单; • 支持 Catelet 开发,类似数据库存储过程,用于跨分片复杂 SQL 的人工智能编码实现,143 行 Demo 完成跨分片的两个表的 JION 查询; • 支持 NIO 与 AIO 两种网络通信机制,Windows 下建议 AIO,Linux 下目前建议 NIO; • 支持 Mysql 存储过程调用; • 以插件方式支持 SQL 拦截和改写; • 支持自增长主键、支持 Oracle 的 Sequence 机制。

    03

    探索 | PolarDB-X:实现高效灵活的分区管理

    用户在使用分布式数据库时,最想要的是既能将计算压力均摊到不同的计算节点(CN),又能将数据尽量散列在不同的存储节点(DN),让系统的存储压力均摊到不同的DN。对于将计算压力均摊到不同的CN节点,业界的方案一般比较统一,通过负载均衡调度,将业务的请求均匀地调度到不同的CN节点;对于如何将数据打散到DN节点,不同的数据库厂商有不同策略,主要是两种流派:按拆分键Hash分区和按拆分键Range分区,DN节点和分片之间的对应关系是由数据库存储调度器来处理的,一般只要数据能均匀打散到不同的分区,那么DN节点之间的数据基本就是均匀的。如下图所示,左边是表A按照列PK做Hash分区的方式创建4个分区,右边是表A按照列PK的值做Range分区的方式也创建4个分区:

    00

    【ES三周年】ES最佳实践案例

    Elasticsearch 是一个高效、快速且高度可扩展的搜索引擎。它已经成为许多公司和组织的首选搜索引擎,特别是在大型数据集的情况下。 根据经验,在使用 Elasticsearch 时遵循一些最佳实践可以帮助您实现更好的性能和可维护性。 第一项最佳实践是对数据进行良好的设计和建模。这意味着数据需要在索引之前进行精心设计和建模,以确保正确的搜索和过滤。在建立索引之前,首先需要确定索引的字段,并确定如何解析和存储需要索引的数据。为了减少查询的处理时间,必须避免不必要的字段嵌套。 第二项最佳实践是索引和分片的优化。在 Elasticsearch 中,索引通常是垂直划分数据的方式。对于大型数据集,我们需要对索引进行水平分片,以便每个节点都可以处理一部分索引。此外,我们还需要进行分片的恰当设置和大小的控制,以便避免节点过载,从而每个节点在集群中受益平均。 第三项最佳实践是对查询进行优化。良好的查询设计可以极大地增加性能。为了最大限度地减少搜索的时间,我们建议在搜索操作中使用一些基本的 Elasticsearch 查询优化技巧,例如使用 match 查询,尽可能减小过滤器查询的数量等。 第四项最佳实践是监控 Elasticsearch 的健康状况。在 Elasticsearch 集群中,节点状态、索引状态、负载均衡、缓存大小、查询速度等都可以影响整个集群的性能。因此,借助 Elasticsearch 的监控工具,每天都对集群进行定期监控的有效健康状况的大有裨益。 最后一项最佳实践是在维护 Elasticsearch 系统时进行数据重建和性能分析。数据重建有助于缩小索引大小,释放磁盘空间,并确保数据有序。同时,定期对 Elasticsearch 进行性能分析有助于发现性能瓶颈和优化 Elasticsearch 集群,以便其在提供服务和响应时间方面获得更好的结果。 综上所述,Elasticsearch 是一个强大的搜索引擎,但需要遵循一些有效的最佳实践,从而发挥其最大的潜力。事实上,良好的 Elasticsearch 系统设计和性能优化,可以帮助您的公司提高效率,改善搜索结果质量,并提高整个系统的可靠性,还可以保证您的系统能够保持最新状态并且运作更加高效。

    02

    独家特性 | 腾讯云大数据ES:一站式索引全托管,自治索引大揭秘!

    作者:腾讯云大数据ES团队 自治索引是腾讯云ES推出的一站式索引全托管解决方案,应用于日志分析、运维监控等时序数据场景,提供分片自动调优、查询裁剪、故障自动修复、索引生命周期管理等功能。可在降低运维与管理成本的同时,提高使用效率与读写性能。 背景概述 腾讯云ES团队从大量的运营实践中发现,索引的合理设置是业务高效稳定运行的基础,现实中索引管理不仅使用门槛高、运维投入高,更是很多线上问题的源头,目前ES 60%的运维管理操作、60%的基础线上问题都与此相关,是使用ES的关键痛点。  基于此背景,腾讯云ES推出

    01

    hadoop中的一些概念——数据流

    数据流   首先定义一些属于。MapReduce作业(job)是客户端需要执行的一个工作单元:它包括输入数据、MapReduce程序和配置信息。Hadoop将作业分成若干个小任务(task)来执行,其中包括两类任务,map任务和reduce任务。   有两类节点控制着作业执行过程,:一个jobtracker以及一系列tasktracker。jobtracker通过调度tasktracker上运行的任务,来协调所有运行在系统上的作业。tasktracker在运行任务的同时,将运行进度报告发送给jobtracker,jobtracker由此记录每项作业任务的整体进度情况。如果其中一个任务失败,jobtracker可以再另外衣tasktracker节点上重新调度该任务。   Hadoop将MapReduce的输入数据划分成等长的小数据块,称为输入分片(input split)或简称分片。Hadoop为每个分片构建一个map任务,并由该任务来运行用户自定义的map函数从而处理分片中的每条记录。   拥有许多分片,意味着处理每个分片所需要的时间少于处理整个输入数据所花的时间。因此,如果我们并行处理每个分片,且每个分片数据比较小,那么整个处理过程将获得更好的负载平衡,因为一台较快的计算机能够处理的数据分片比一台较慢的计算机更多,且成一定比例。即使使用相同的机器,处理失败的作业或其他同时运行的作业也能够实现负载平衡,并且如果分片被切分的更细,负载平衡的质量会更好。   另一方面,如果分片切分的太小,那么管理分片的总时间和构建map任务的总时间将决定着作业的整个执行时间。对于大多数作业来说,一个合理的分片大小趋向于HDFS的一个块的大小,默认是64MB,不过可以针对集群调整这个默认值,在新建所有文件或新建每个文件时具体致死那个即可。   Hadoop在存储有输入数据(Hdfs中的数据)的节点上运行map任务,可以获得最佳性能。这就是所谓的数据本地化优化。现在我们应该清楚为什么最佳分片大小应该与块大小相同:因为它是确保可以存储在单个节点上的最大输入块的大小。如果分片跨越这两个数据块,那么对于任何一个HDFS节点,基本上不可能同时存储这两个数据块,因此分片中的部分数据需要通过网络传输到map任务节点。与使用本地数据运行整个map任务相比,这种方法显然效率更低。   map任务将其输出写入本地硬盘,而非HDFS,这是为什么?因为map的输出是中间结果:该中间结果由reduce任务处理后才能产生最终输出结果,而且一旦作业完成,map的输出结果可以被删除。因此,如果把它存储在HDFS中并实现备份,难免有些小题大做。如果该节点上运行的map任务在将map中间结果传送给reduece任务之前失败,Hadoop将在另一个节点上重新运行这个map任务以再次构建map中间结果。   reduce任务并不具备数据本地化的优势——单个reduce任务的输入通常来自于所有mapper的输出。在下面的李宗中,我们仅有一个reduce任务,其输入是所有map任务的输出。因此,排过序的map输出需要通过网络传输发送到运行reduce任务的节点。数据在reduce端合并,然后由用户定义的reduce函数处理。reduce的输出通常存储在HDFS中以实现可靠存储。对于每个reduce输出的HDFS块,第一个副本存储在本地节点上,其他副本存储在其他机架节点中。因此,reduce的输出写入HDFS确实需要占用网络带宽,但这与正常的HDFS流水线写入的消耗一样。   一个reduce任务的完成数据流如下:虚线框表示节点,虚线箭头表示节点内部数据传输,实线箭头表示节点之间的数据传输。

    02

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券