1. 架构和设计思想:NiFi是基于流处理的架构设计,它通过将数据流从源头到目的地的整个过程建模为数据流,实现数据的可靠传输、数据转换和数据处理。而DataX是基于批处理的架构设计,它通过将数据源和目的地分别定义为Reader和Writer,通过数据抽取、数据转换和数据加载三个步骤完成数据集成。
Apache SeaTunnel 是一个非常易用的超高性能分布式数据集成产品,支持海量数据的离线及实时同步。每天可稳定高效同步万亿级数据,已应用于数百家企业生产,也是首个由国人主导贡献到 Apache 基金会的数据集成顶级项目。
摘要:本文由美团研究员、实时计算负责人鞠大升分享,主要介绍 Flink 助力美团数仓增量生产的应用实践。内容包括:
本文对HBase常用的数据导入工具进行介绍,并结合云HBase常见的导入场景,给出建议的迁移工具和参考资料。
最后,该数据被加载到数据库中。在当前的技术时代,“数据”这个词非常重要,因为大多数业务都围绕着数据、数据流、数据格式等运行。现代应用程序和工作方法需要实时数据来进行处理,为了满足这一目的,市场上有各种各样的ETL工具。
整个架构图分为三层,从下往上看,最下面一层是数据安全,包括受限域认证系统、加工层权限系统,应用层权限系统,安全审计系统,来保证最上层数据集成与处理的安全;
ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换,迁移,所以了解并掌握一种etl工具的使用,必不可少。最近用kettle做数据处理比较多,所以也就介绍下这方面内容,这里先对比下几款主流的ETL工具。
对于数据仓库,大数据集成类应用,通常会采用ETL工具辅助完成。ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、交互转换(transform)、加载(load)至目的端的过程。当前的很多应用也存在大量的ELT应用模式。常见的ETL工具或类ETL的数据集成同步工具很多,以下对开源的Sqoop、dataX、Kettle、Canal、StreamSetst进行简单梳理比较。
今天谈下大数据平台构建中的数据采集和集成。在最早谈BI或MDM系统的时候,也涉及到数据集成交换的事情,但是一般通过ETL工具或技术就能够完全解决。而在大数据平台构建中,对于数据采集的实时性要求出现变化,对于数据采集集成的类型也出现多样性,这是整个大数据平台采集和集成出现变化的重要原因。
作者|高俊 编辑|邓艳琴 在今年 2 月份的 QCon 全球软件开发大会(北京站)上,Apache SeaTunnel PPMC Member 高俊 分享了题为《EtLT 架构下的数据集成平台—Apache SeaTunnel》,本文由此整理,复制链接下载完整 PPT:https://qcon.infoq.cn/202302/beijing/presentation/5173 此次分享的主要内容分为 6 块,分别是—— 1. ETL 到 EtLT 架构演进 2. 数据集成领域的痛点 & 常见的解决方
作者 | 蔡芳芳 采访嘉宾 | 王宇飞、罗齐 自年初成立开源委员会以来,字节跳动开源动作频频。公开信息显示,字节跳动近五个月新开源了不少项目,包括 Shuffle 框架 Cloud Shuffle Service、基于 Rust 的 RPC 框架 Volo 等。 10 月 26 日,字节宣布开源自研数据集成引擎 BitSail,采用 Apache 2.0 开源许可。据悉,BitSail 支持多种异构数据源间的数据同步,并提供离线、实时、全量、增量场景下的全域数据集成解决方案,目前服务于字节内部几乎所有
当前是一个数据驱动企业发展的时代,企业的数字化转型已不再是选择题,而是关乎生存与发展的必答题。在这场深刻的变革中,数据集成平台作为连接企业内部外数据孤岛、促进数据流动与融合的桥梁,扮演着至关重要的角色。它不仅是企业数据战略的基石,更是推动业务创新、提升决策效率、优化运营流程的强大引擎。下面是我们总结的数据集成平台在企业数字化转型过程中的五大关键角色,揭示其如何赋能企业,引领数字化浪潮。
在大数据处理的领域中,ETL和ELT是两个经常被数据工程师提到的工具,而有很多数据工程师对这两种工具的区别和使用和定位有一定的模糊,其实它们分别代表了两种不同的数据集成方法。尽管这两种方法看起来都是从源系统提取数据,转换数据,并加载到目标系统,但它们在实现这一过程中的方式和重点有所不同,我们需要详细了解他们工作原理和优缺点,以便在数据处理的不同场景选择合适的工具来进行数据管道的构建。
ETL绝不是三个单词直译这么简单,三个数据环节紧密连接构成体系庞大、技术复杂度的数据生态系统。
Apache Sqoop是一种用于在Apache Hadoop和结构化数据存储(如关系数据库)之间高效传输批量数据的工具。http://sqoop.apache.org/
☞ ETL同步之道 [ Sqoop、DataX、Kettle、Canal、StreamSets ]
☞ ETL同步之道 [ Sqoop、DataX、Kettle、Canal、StreaSets ]
ETL流程是数据仓库建设的核心环节,它涉及从各种数据源中抽取数据,经过清洗、转换和整合,最终加载到数据仓库中以供分析和决策。在数据仓库国产化的背景下,ETL流程扮演着重要的角色,今天我们就来讲讲ETL流程的概念和设计方式。
随着数字化转型,企业越来越重视数据的价值和利用。商业智能(Business Intelligence,BI)作为一种数据分析和决策支持的重要工具,被广泛应用于各行各业。然而,对于BI项目的成功实施,ETL(Extract, Transform, Load)过程的重要性不容忽视。ETL作为BI项目的基础,如果缺乏或不完善,往往会导致BI项目失败的风险增加。在实际项目接触中我们发现很多企业是先购买了BI工具而往往没有购买ETL工具,企业往往希望通过BI中自带的ETL功能来解决数据采集和清洗的问题,在运行一段时间后企业往往就会发现这种模式是不可行的,接下来我们将分析以下为什么这种模式是不可行的,为什么企业需要购买专的ETL工具。
DataX 是阿里云DataWorks数据集成的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS 等各种异构数据源之间高效的数据同步功能。
总结一下,本文介绍了10种常见的 CDC 组件和方案,个人觉得还不错,如果还有其他好用的 CDC 组件,欢迎在评论区分享分享。
2020年,普元基于自身技术中台所需,验证了一些新技术并加以使用,旨在不断提升技术中台的综合能力。通过这次机会,将我们团队所做的一些技术验证和使用方式与大家分享,希望在公司内外建立更好的技术沟通,同时提出技术中台的下一步发展想法,供大家参考指正。
主要讲解了技术原理,入门与生产实践,主要功能:全增量一体化数据集成、实时数据入库入仓、最详细的教程。Flink CDC 是Apache Flink的一个重要组件,主要使用了CDC技术从各种数据库中获取变更流并接入到Flink中,Apache Flink作为一款非常优秀的流处理引擎,其SQL API又提供了强大的流式计算能力,因此结合Flink CDC能带来非常广阔的应用场景。例如,Flink CDC可以代替传统的Data X和Canal工具作为实时数据同步,将数据库的全量和增量数据同步到消息队列和数据仓库中。也可以做实时数据集成,将数据库数据实时入湖入仓。还可以做实时物化视图,通过SQL对数据做实时的关联、打宽、聚合,并将物化结果写入到数据湖仓中。
CDC实时数据同步指的是Change Data Capture(数据变更捕获)技术在数据同步过程中的应用。CDC技术允许在数据源发生变化时,实时地捕获这些变化,并将其应用到目标系统中,从而保持数据的同步性。CDC实时数据同步具有以下优点:
继上期数据中台技术汇栏目发布DataSimba——企业级一站式大数据智能服务平台,本期介绍DataSimba的数据采集平台。
摘要:本文整理自顺丰大数据研发工程师覃立辉在 5月 21 日 Flink CDC Meetup 的演讲。主要内容包括:
一、DataX数据同步原理二、全量同步实现三、增量同步的思考四、增量同步实现方案五、关于DataX高可用参考
本文介绍了 SparkSQL 和 Flink 对于批流支持的特性以及批流一体化支持框架的难点。在介绍批流一体化实现的同时,重点分析了基于普元 SparkSQL-Flow 框架对批流支持的一种实现方式。希望对大家的工作有所帮助,也希望能对 DatasetFlow 模型作为框架实现提供一些启发。
摘要:本文整理自 OceanBase 技术专家王赫(川粉)在 5 月 21 日 Flink CDC Meetup 的演讲。主要内容包括:
近期在工作中需要用到DataX去作为公司内部的数据同步引擎,特花了一些时间研究了DataX的整体架构和设计思想,从中吸收了很多优秀的设计思路,作为一款纯Java实现的数据同步工具,相对于市面上已存在的基于大数据框架为背景的数据同步工具有着易部署、易扩展的优点,但不足的地方是alibaba只是开源了DataX单机模式代码,并未开源分布式部分代码,目前在Github中的只是阉割版是DataX,对此我表示很遗憾。
SeaTunnel正式通过世界顶级开源组织Apache软件基金会的投票决议,以全票通过的优秀表现正式成为Apache孵化器项目!
小伙伴们选择大数据平台,想必是传统的关系型数据库无法满足业务的存储计算要求,面临着海量数据的存储和计算问题。
ChunJun(原 FlinkX)是一个基于 Flink 提供易用、稳定、高效的批流统一的数据集成工具。2018 年 4 月,秉承着开源共享的理念,数栈技术团队在 github 上开源了 FlinkX,承蒙各位开发者的合作共建,FlinkX 得到了快速发展。
ChunJun(原FlinkX)是一个基于 Flink 提供易用、稳定、高效的批流统一的数据集成工具。2018年4月,秉承着开源共享的理念,数栈技术团队在github上开源了FlinkX,承蒙各位开发者的合作共建,FlinkX得到了快速发展。
在当今数字化时代,数据无疑是企业的重要资产之一。随着数据源的多样性和数量的不断增加,如何有效地收集、整合、存储和分析数据变得至关重要。为了应对这个挑战,数据集成平台成为了现代企业不可或缺的一部分。
本周赠书《性能之巅》第2版 我们公司有个项目的数据量高达五千万,但是因为报表那块数据不太准确,业务库和报表库又是跨库操作,所以并不能使用 SQL 来进行同步。当时的打算是通过 mysqldump 或者存储的方式来进行同步,但是尝试后发现这些方案都不切实际: mysqldump:不仅备份需要时间,同步也需要时间,而且在备份的过程,可能还会有数据产出(也就是说同步等于没同步) 存储方式:这个效率太慢了,要是数据量少还好,我们使用这个方式的时候,三个小时才同步两千条数据… 后面在网上查看后,发现 DataX 这
谈到数据集成,有些人可能想知道有什么可讨论的——这不就是 ETL 吗?也就是说,从各种数据库中提取、转换并最终加载到不同的数据仓库中。
效率办公系列之前连续开了很多期讲RPA,于是就有粉丝安利了低代码数据集成平台,去体验了一波,果然非常nice~
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
在数字化转型的浪潮中,数据已经成为企业的重要资产,而商业智能(BI)项目则是帮助企业利用数据进行分析、洞察和决策的关键工具。尽管BI项目的目标是实现数据驱动的决策,但实际上,项目中大部分时间和资源都被用于数据的提取、转换和加载(ETL)过程,只有约20%的时间用于BI可视化。
在SaaS领域,近来最吸引眼球的一则消息莫过于Salesforce以大约65亿美元收购了应用集成服务商MuleSoft,业界普遍认为通过此举Salesforce不仅能继续巩固其在云服务中的领先地位,而且通过API与数据集成,还能将自身塑造成一家具有成本效益的数据流供应商。 在技术世界中,“一切都有关于数据”已经是陈词滥调,而随着社交网络、在线网络以及物联网的出现,数据量出现了激增,因此如何去利用这些海量的数据去最大化的满足客户需求从而获得竞争优势成为了云供应商的一项重要的任务。 当前,企业和机构所面临的最大
在大数据平台中,是不生产数据的,或者说原始数据都是来源于业务系统。所以,我们需要做的第一件事,就是将业务系统的数据搬运到数据平台。改用那句耳熟能详的话,我不生产数据,我只是数据的搬运工。这个数据的搬运工,就是数据平台的第一个模块--数据集成。
本文档为数据集成和互操作思维导图与知识点整理。共分为5个部分,由于页面显示原因,部分层级未能全部展开。结构如下图所示。
ETL 工具已经使用了近五年,使组织能够持续分析、开发和处理数据,数家数据库管理、分析和商业智能领域的资深企业供应商继续保持领先地位,同时,行业解决方案在 2022 年不断演进,以满足云和边缘数据处理需求。
从数据治理的角度来看如何打破数据孤岛现是企业数据治理过程中最大的核心挑战。由于不同的业务部门和系统之间的数据相互独立,导致数据之间无法共享和利用,从而影响了企业的整体运营效率。IDC公司的调查显示,2022年,全球范围内有60%的企业面临“数据孤岛”的问题,企业无法高效、快速的从多个异构数据源中稳定汇聚数据。例如很多企业的生产部门和销售部门之间的数据无法共享,导致生产计划无法根据销售数据进行调整,销售订单也无法及时反馈到生产部门。这种数据孤岛现象导致企业生产效率低下,销售业绩也无法得到提升,要解决数据孤岛的问题,企业必须建立一个稳定、高效的全域数据集成平台。
为物联网平台与应用提供高性能的实时数据处理与集成,一直是 EMQX 最重要的能力之一。最新发布的 EMQX 5.0 针对数据集成相关功能进行了深度的重构和优化,以期帮助用户更加轻松灵活地使用。
ETL代表提取、转换和加载。它是从任何数据源中提取数据并将其转换为适当格式以供存储和将来参考的过程。
领取专属 10元无门槛券
手把手带您无忧上云