首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据透视表多表合并

今天跟大家分享有关数据透视表多表合并的技巧!...利用数据透视表进行多表合并大体上分为两种情况: 跨表合并(多个表在同一工作薄内) 跨工作薄合并(多个表分别在不同工作薄内) 跨表合并(工作薄内表合并) 对于表结构的要求: 一维表结构 列字段相同 无合并单元格...以下是合并步骤: 新建一个汇总表(可以在本工作薄新建也可以在新建的工作薄建立) 插入——数据透视表向导(一个需要自己添加的菜单,如果在菜单中找不到就到自定义功能区中去添加) 以上步骤也可以通过快捷键完成...在弹出的数据透视表向导中选择多重合并计算数据区域,点击下一步。 选择创建自定义字段,继续点击下一步。 ? 在第三步的菜单中选定区域位置用鼠标分别选中四个表的数据区域(包含标题字段)。...合并步骤: 与工作薄内的表间合并差不多,首先插入——数据透视表向导(快捷键:Alt+d,p) 选择多重合并计算字段——创建自定义字段。 ? 将两个工作薄中的四张表全部添加到选定区域。 ? ?

9.7K40

数据透视表多表合并|字段合并

今天要跟大家分享的内容是数据透视表多表合并——字段合并!...因为之前一直都没有琢磨出来怎么使用数据透视表做横向合并(字段合并),总觉得关于表合并绍的不够完整,最近终于弄懂了数据透视表字段合并的思路,赶紧分享给大家!...数据仍然是之前在MS Query字段合并使用过的数据; 四个表,都有一列相同的学号字段,其他字段各不相同。 建立一个新工作表作为合并汇总表,然后在新表中插入数据透视表。...Ctrl+d 之后迅速按p,调出数据透视表向导 选择多重合并计算选项: ? 选择自定义计算字段 ? 分别添加三个表区域,页字段格式设置为0(默认)。 ?...此时已经完成了数据表之间的多表字段合并! ? 相关阅读: 数据透视表多表合并 多表合并——MS Query合并报表

7.7K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据透视表入门

    今天跟大家分享有关数据透视表入门的技巧! 数据透视表是excel附带功能中为数不多的学习成本低、投资回报率高、门槛低上手快的良心技能!...直接看本文的案例数据 (一定要注意了数据透视表的原数据结构一定要是一维表格,无合并单元格。) ?...然后我们将利用几几步简单的菜单操作完成数据透视表的配置环境: 首先将鼠标放在原数据区域的任一单元格,选择插入——透视表; 在弹出的菜单中,软件会自动识别并完成原数据区域的选区工作。 ?...你需要做的是定义好数据透视表的输出位置: 新工作表:软件会为透视表输出位置新建一个工作表; 现有工作表:软件会将透视表输出位置放在你自定义的当前工作表目标单元格区域。...此时你选定的透视表存放单元格会出现透视表的 布局标志,同时在软件右侧出现数据透视表字段菜单,顶部菜单栏也会自动出现数据透视表工具菜单。

    3.6K60

    传统数据透视表之不能——非重复计数PowerPivot轻松解

    小勤:大海,上次你的文章《Excel统计无法承受之轻——非重复计数问题PQ解》教我用Power Query直接实现了非重复计数的操作,但现在除了非重复计数,还有很多其他的数据要统计,能不能直接在数据透视表里实现...Step-1:将数据添加到数据模型 Step-2:创建数据透视表 Step-3:按统计分析需要将不同的字段拖拽到相应的行、值位置 Step-4:将客户号的计数改为“非重复计数“,同时按需要修改字段名称...Step-5:在透视表结果中修改相应名称 完成结果如下: 小勤:这就是我要的结果啊!...好像跟传统数据透视表的操作基本没有差别啊。 大海:是的,其实就是第一步,将数据“添加到数据模型”,其他没有任何差别。 小勤:嗯。...就是添加到数据模型后,创建的数据透视表模型里来,就直接支持非重复计数了? 大海:对啊。

    3K30

    Python数据透视表与透视分析:深入探索数据关系

    数据透视表是一种用于进行数据分析和探索数据关系的强大工具。它能够将大量的数据按照不同的维度进行聚合,并展示出数据之间的关系,帮助我们更好地理解数据背后的模式和趋势。...在Python中,有多个库可以用来创建和操作数据透视表,其中最常用的是pandas库。 下面我将介绍如何使用Python中的pandas库来实现数据透视表和透视分析。...df = pd.read_csv('data.csv') # 根据实际情况修改文件路径和格式 3、创建数据透视表:使用pandas的pivot_table()函数可以轻松创建数据透视表。...:通过创建数据透视表,我们可以深入探索不同维度之间的数据关系,并对数据进行分析。...下面是一些常用的操作: 筛选数据:可以基于数据透视表中的特定值或条件筛选出我们感兴趣的数据。

    24210

    数据科学小技巧3:数据透视表

    数据透视表是Excel里面常用的分析方法和工具,通过行选择,指定需要分组指标;通过列选择,指定需要计算指标,最后在指定需要聚合计算类型,比方说是计数,还是求均值,还是累加和等等。...第三个数据科学小技巧:数据透视表。前面的数据科学小技巧,可以点击下面链接进入。...数据科学小技巧系列 1数据科学小技巧1:pandas库apply函数 2数据科学小技巧2:数据画像分析 我们用Python语言和pandas库轻松实现数据透视表功能。...第二步:导入数据集 ? 第三步:数据检视 ? 第四步:数据透视表 ?...我们使用pandas库的pivot_table函数,重要参数设置: index参数:指定分组指标 values参数:指定计算的指标 aggfunc参数:指定聚合计算的方式,比方说求平均,累加和 数据透视表结果

    1.1K30

    【数据处理包Pandas】数据透视表

    import numpy as np import pandas as pd 一、通过多级索引创建数据透视表 利用多级索引产生学生成绩表: r_index = pd.MultiIndex.from_product...df2.reindex(columns=[('富强','数学'),('李海','英语'),('王亮','数学'),('富强','语文')]) 二、数据透视表   数据透视表相当于在行和列两个维度上进行分组...数据透视表的效果可以通过groupby来实现,但有时候直接使用pivot_table方法建立数据透视表可能更方便些,而且额外提供了汇总功能。...第1个参数是data参数,提供了绘制数据透视表的数据来源,可以是整个 DataFrame,也可以是 DataFrame 的子集;index和columns参数指定了行分组键和列分组键;values指定想要聚合的数据字段名...df 注意: (1)交叉表只能以pd而不能以 DataFrame 对象作为crosstab方法的前缀 (2)crosstab方法没有data参数,index和columns参数不能用列名字符串,而需要用

    7400

    数据透视,能不能自己透视自己?| Power Query技巧

    在Excel的数据透视表里,我们如果要对某一列的内容进行次数统计和对比,可以同时将该列添加到透视表的“列”和“值”里,如下图所示对金额类别列进行统计对比: 这种透视,有点儿像是某列(如案例中的“类别...“)自己透视自己,那么,在Power Query里进行透视时,是否也可以这样操作呢?...数据下载链接:https://t.zsxq.com/05UrZzjm2 我是大海,欢迎加入知识星球【Excel到PowerBI】,更多系列视频,更多实战练习,问答更详尽,学习更高效。...我们将数据添加到Power Query后,尝试对“类别”列进行透视,然鹅,在透视列的设置对话框中,你不能再选择“类别”! 那Power Query里如果要实现这样的统计,该怎么办呢?...Step-02 对辅助列进行透视 选中“类别”列,然后进行透视,值列选择前面添加的“自定义”列即可: - 2 - 改公式法 实际上,Power Query本身就支持某列对自己进行透视,只是在操作界面上没有体现出来而已

    1K50

    PP-入门前奏:传统数据透视表之不能——非重复计数

    小勤:大海,上次你的文章《Excel统计无法承受之轻——非重复计数问题PQ解》教我用Power Query直接实现了非重复计数的操作,但现在除了非重复计数,还有很多其他的数据要统计,能不能直接在数据透视表里实现...Step-1:将数据添加到数据模型 Step-2:创建数据透视表 Step-3:按统计分析需要将不同的字段拖拽到相应的行、值位置 Step-4:将客户号的计数改为“非重复计数“,同时按需要修改字段名称...Step-5:在透视表结果中修改相应名称 完成结果如下: 小勤:这就是我要的结果啊!...好像跟传统数据透视表的操作基本没有差别啊。 大海:是的,其实就是第一步,将数据“添加到数据模型”,其他没有任何差别。 小勤:嗯。...就是添加到数据模型后,创建的数据透视表模型里来,就直接支持非重复计数了? 大海:对啊。

    71520

    在pandas中使用数据透视表

    什么是透视表? 经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?...首先导入数据: data = pd.read_excel("E:\\订单数据.xlsx") data.head() 接下来使用透视表做分析: 计算每个州销售总额和利润总额 result1 = pd.pivot_table

    2.8K40

    技术|数据透视表,Python也可以

    对于习惯于用Excel进行数据分析的我们来说,数据透视表的使用绝对是排名仅次于公式使用的第二大利器。特别是在数据预处理的时候,来一波透视简直是初级得不能再初级的操作了。...我们在开始对一组数据进行分析的时候,进行描述性统计都是必不可少的一步,不管你要用什么精深的算法,使用描述性统计进行数据查错和清洗这个步骤都不能少。...接下来就给大家讲一下如何在Python中实现数据透视表的功能。 ? pivot ? pd.pivot_table 这就是实现数据透视表功能的核心函数。显而易见,这个函数也是基于Pandas的。...在使用这个功能之前,需要先import pandas as pd哦~ pivot这个单词本身就已经告诉我们这个函数实现的功能类似于数据透视表(数据透视:data pivot) 需要指定的参数也和Excel...我们先回顾一下使用Excel进行数据透视表的操作过程: 首先,选中希望进行数据透视的数据,点击数据透视表,指定数据透视表的位置。 ? ?

    2.1K20

    在pandas中使用数据透视表

    Python大数据分析 记录 分享 成长 什么是透视表?...经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视表可以快速抽取有用的信息: pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...下面拿数据练一练,示例数据表如下: 该表为用户订单数据,有订单日期、商品类别、价格、利润等维度。

    3K20
    领券