我们生活在数据的时代,多了解一些数据方面的知识,能够帮助自己更好的发展,还能够推动企业的发展,相信很多人都知道数据湖和数据中台,因为它们在日常生活当中是比较常见的,以下就是关于数据湖和数据中台的区别。
数字化转型浪潮卷起各种新老概念满天飞,数据湖、数据仓库、数据中台轮番在朋友圈刷屏,有人说“数据中台算个啥,数据湖才是趋势”,有人说“再见了数据湖、数据仓库,数据中台已成气候”……
数据从离线到实时是当前一个很大的趋势,但要建设实时数据、应用实时数据还面临两个难题。首先是实时和离线的技术栈不统一,导致系统和研发重复投入,在这之上的数据模型、代码也不能统一;其次是缺少数据治理,实时数据通常没有纳入数据中台管理,没有建模规范、数据质量差。针对这两个问题,网易数帆近日推出了实时数据湖引擎 Arctic。据介绍,Arctic 具备实时数据更新和导入的能力,能够无缝对接数据中台,将数据治理带入实时领域,同时支持批量查询和增量消费,可以做到流表和批表的一体。
我们谈论数据中台之前,我们也听到过数据平台、数据仓库、数据湖的相关概念,它们都与数据有关系,但他们和数据中台有什么样的区别,下面我们将分别介绍数据平台数据仓库数据湖和数据中台。
引言 在本系列的前面两篇文章(《数据智能时代来临:本质及技术体系要求》和《多维度分析系统的选型方法》)之中,我们概括性地阐述了对于数据智能的理解,并根据工作中团队涉及到的多维度分析系统的选型方法进行了穿插介绍。按照原先的规划,我们接下去的内容会涉及数据智能平台中的治理、安全计算以及质量保证方面。
Pentaho首席技术官James Dixon创造了“数据湖”一词。它把数据集市描述成一瓶水(清洗过的,包装过的和结构化易于使用的)。
随着大数据技术的不断更新和迭代,数据管理工具得到了飞速的发展,相关概念如雨后春笋一般应运而生,如从最初决策支持系统(DSS)到商业智能(BI)、数据仓库、数据湖、数据中台等,这些概念特别容易混淆,本文对这些名词术语及内涵进行系统的解析,便于读者对数据平台相关的概念有全面的认识。
如今,随着诸如互联网以及物联网等技术的不断发展,越来越多的数据被生产出来。据统计,每天大约有超过2.5亿亿字节的各种各样数据产生。这些数据需要被存储起来并且能够被方便的分析和利用。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
在前面两篇文章(《数据智能时代来临:本质及技术体系要求》和《多维度分析系统的选型方法》)之中,我们概括性地阐述了对于数据智能的理解,并根据工作中团队涉及到的多维度分析系统的选型方法进行了穿插介绍。按照原先的规划,我们接下去的内容会涉及数据智能平台中的治理、安全计算以及质量保证方面。
来源:五分钟学大数据 本文约10000+字,建议阅读10+分钟 本文将从历史的角度对数据湖和数据仓库的来龙去脉进行深入剖析。 随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。 但是数据仓库和数据湖的区别到底是什么,是技术路线之争?是数据管理方式之争?二者是水火不容还是其实可以和谐共存,甚至互为补充? 本文作者来自阿里巴巴计算平台部门,深度参与阿里巴巴大数据/数
导读:随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。
近日,大数据独角兽 Databricks 官宣 H 轮融资,经过这一轮 16 亿美元融资,其估值已经飙升至 380 亿美元。Databricks 联合创始人兼首席执行官 Ali Ghodsi 在媒体采访中表示,这笔资金将主要用于加速构建在 lakehouse(湖仓一体)赛道的布局。
作者简介:6年大数据开发经验,从毕业一直从事大数据开发工作,渣渣二本,凭借自己努力进入一线互联网企业,目前负责实时计算开发工作。最近看到大家对互联网词汇特别迷,我就写一篇文章来给大家讲讲,好久没有写原创了,主要是平时太忙了,没时间写。
有迹可循的大数据思想萌芽,可追溯至1974年,当时有学者在论文中首次提出了“大数据集”的概念,但一直到1991年,Bill Inmon出版了《建立数据仓库》一书,才真正算是在大数据领域有了被广泛接受的“数据仓库”定义。随后,在20世纪初,数据处理量达到TB级的情况下,数据处理、展现应用于业务带来的提升,学界的广泛认同和商界的快速产品化,证明了数据仓库的历史意义与价值。
随着新一轮科技革命和产业变革兴起,大数据、云计算、人工智能等技术日益发展,越来越多的企业开始探寻商业模式创新和商业生态系统重构的途径与方法,因此越来越多的企业走向数字化转型之路。然而企业数字化转型不是一蹴而就的事情,对于企业本身而言,不仅涉及企业的上层决策,还需要企业对其业务系统进行改造,对文化有所创新;对技术服务商来说,不仅需要能够帮助企业融合数字化技术梳理业务转型需求,还需要深谙企业数字化转型的需求和行业规律,既能覆盖千行百业数字化转型的广度,又能满足细分行业不同场景的深度需求。
导读:要建设数据中台,我们首先需要明确什么是数据中台,以及数据中台能为企业带来什么价值。
无论什么新技术名词(概念),不要去抵触,试着去了解,最好是能从其中学习到一些好的东西。名词(概念)本身并没有那么重要。
数据湖(Data Lake)概念自2011年被推出后,其概念定位、架构设计和相关技术都得到了飞速发展和众多实践,数据湖也从单一数据存储池概念演进为包括 ETL 分析、数据转换及数据处理的下一代基础数据平台。
通常是业务发展到一定规模后,业务分析师、CIO、决策者们,希望从大量的应用系统、业务数据中进行关联分析,最终得到“干货”出来。比如为啥利润会下滑?为啥库存周转变慢了?向数据要答案,生成报告、图表出来给决策层汇报,辅助经营决策。可是,数据库“脑容量不足”,擅长事务性工作,不擅长分析型的工作,于是就产生了数据仓库。数据仓库相当于一个集成化数据管理的平台,从多个数据源抽取有价值的数据,在仓库内转换和流动,并提供给BI等分析工具来输出干货。
数据管理是指组织对其整个数据生命周期进行的规划、执行和控制,以期最大化数据的价值。它涵盖了从数据采集、存储、处理到最终使用等全部过程。
除了支撑集团的大数据建设,团队还提供To B服务,因此我也有机会接触到一些正在做数字化转型的传统企业。从2018年末开始,原先市场上各种关于大数据平台的招标突然不见了,取而代之的是数据中台项目,建设数据中台俨然成为传统企业数字化转型的首选,甚至不少大数据领域的专家都认为,数据中台是大数据下一站。
数仓技术应对关系型结构化数据游刃有余,但对于多元异构数据,却爱莫能助。最近行业大佬都在聊怎么部署数据湖,这波操作未来走向如何? 数据湖技术能够实现全量数据的单一存储,通常存储原始格式的对象块或者文件。不管是传统数仓承载的结构化数据还是半结构化数据、非结构化数据、二进制数据等任意类型的数据,数据湖都可以轻松实现采集、存储和分析。 更为人性化的是,数据湖可根据企业的业务需求提供可大可小的弹性扩充,数据可在治理规则下自由流动,采用统一的存储引擎,支持多模式计算引擎,可以运行从控制面板和可视化到大数据处理、实时分
确实,如果从一个初学者来说这些技术可能大家听起来会很容易觉得混淆,他们到底是什么样的一些关系?我为大家去简单的梳理一下。
大数据是海量数据模式下,对数据进行存储以及计算的一种架构,或者说生态。数据量达到这个级别,单机数据库、MPP架构都无法支撑的时候,只能寻求大数据架构去做解决。
很多小伙伴在工作遇到一定瓶颈的时候,都希望引入一些新技术来解决问题,比如最近经常在群里看到大家聊:
大数据技术的发展历程中,继数据仓库、数据湖之后,大数据平台的又一革新技术——湖仓一体近年来开始引起业内关注。市场发展催生的数据管理需求一直是数据技术革新的动力。比如数据仓库如何存储不同结构的数据?数据湖又如何避免因为缺乏治理导致的数据杂乱现象?今天的文章想跟大家具体聊聊我们的数栈如何解决这些问题。
传统数仓定制化报表,排期周期长,响应需求慢,重复开发工作比较多。T+1的数据失效也满足不了现在互联网业务场景下对数据实时处理能力的需求。对中台平台自主化开发,可以提升数据加工能力沉淀,以及实时数据处理能力。
从2010年Pentaho公司的创始人兼首席技术官詹姆斯·狄克逊(James Dixon)首次提出数据湖的概念开始,数据湖十年发展之路可谓是兜兜转转、起起伏伏。在这期间,既有开源厂商们提出的各种营销理念,也有传统存储厂商打造的各类解决方案,更有业界对于数据湖带来的数据沼泽、数据价值探索等问题的深入思考。
嘉宾 | 吴英骏、李栋、王宇飞 采访 | 赵钰莹 数据堆栈是近几年在海外方兴未艾的概念,其中,最知名的当属 dbt 的 CEO Tristan Handy 在 2020 年下半年发表的“The Modern Data Stack: Past, Present, and Future”(The Modern Data Stack: Past, Present, and Future),在文章中,他将现代数据堆栈分成了寒武纪大爆发一期(2012-2016),部署(2016-2020),与寒武纪大爆发二期(20
自 2010 年左右兴起到现在,微服务(Microservices)已经成为事实上的软件架构范式,被企业广泛采用,并引发了围绕面向领域设计模式优缺点的激烈讨论。如今,这股浪潮开始席卷数据领域。
第一次接触数据湖的时候,我对这个概念也是一知半解,用一个比较形象的例子举例,湖里的水就是各种各样的数据,你舀了一瓶水上来但是不一定干净,有可能混杂着各种各样的杂质,成为能喝的水还要经过一层层过滤和净化。类比到数据湖也是如此,数据湖里有结构化和非结构化的数据,内部数据和外部数据,即原始数据的集合。在业务流程中是指根据业务规则直接产生的数据,数据湖保留了数据的原格式,原则上不对数据进行清洗、加工。
编辑 | 薛梁 Lucien 我是汪源,来自网易杭州研究院,网易有不同的事业单元,包括说媒体、教育、音乐、严选、游戏等,我们团队给所有的事业单元提供技术支撑。同时这几年我们也通过网易数帆品牌为 300 家以上中大型的客户提供技术服务。今天来 ArchSummit 全球架构师峰会上,主要分享我们长期以来对数据分析技术相关的趋势的观察和思考。 首先介绍一下自己。我可以说是干了一辈子数据相关的技术研发,我在网易杭州研究院也会管理基础设施、云原生、IT 等相关的团队,从我个人来说最关注的还是数据相关的领域,因为我
2023 DAMS中国数据智能管理峰会-上海站将于3月31日盛大举办,峰会设置了大数据、数据治理&数据资产管理、信创数据库、信创运维、金融&运营商等五大主题专场,与大家一起探索大数据与云原生强强联合的方式,挖掘由此激发的软件发展和技术进步。其中,腾讯实时湖仓团队负责人邵赛赛老师将分享《实时湖仓一体在腾讯的实践落地》,内容概要提前剧透: 实时湖仓一体在腾讯的实践落地 议题要点及收获: 湖仓一体技术可以为业务带来原先Hadoop数仓所无法提供的能力,包括流批一体架构、行级更新、schema evolutio
数智化汹涌而来,前驱者已初尝甜头:据《福布斯》披露,《财富》500强公司数据可访问性增加10%,便可带来6,500万美元的额外净收入——“依靠智能算法及敏捷数据准备在数据海洋中提炼‘石油’,让决策更科学”已成为众多企业的共识。
导读:本文将介绍过去15年中,网易大数据团队在应对不断涌现的新需求、新痛点的过程中,逐渐形成的一套逻辑数据湖落地方法。内容分为五部分:
目前, Meson 已登陆腾讯云数据湖、检索分析服务、云数据仓库三大业务线,为企业在湖仓一体分析、向量检索、海量数据离线计算等业务场景带来卓越的性能表现。
作者 | 张雅文 当前,数字化转型已成为很多企业的必修课。而面对如今的经济形势,企业为数字化转型迈出的每一步都至关重要。过去,不少企业为充分发挥数据价值,已经做了很多相关努力,从以 Hadoop 为核心的数据湖,到 Snowflake、Databricks 等云上数据仓库,再到湖仓一体化...... 这些举措真的解决了与日俱增的数据问题吗?未必。今年 Gartner 发布的《分析查询加速的市场引导报告》就曾指出,企业在享受数据湖带来灵活性的同时,也承受着因数据使用和管理混乱带来的不利影响。 传统BI 已经无
近年来,随着IOT、5G等技术的普及与发展,以及数智化进程的推进,企业获取的数据量正以指数级增长。为解决海量数据的采集、加工、分析,以沉淀数据资产来更好的面对营销、运营等业务难题与挑战,数据中台的概念应运而生。这个由阿里巴巴在2015年根据自身业务需要提出的概念,后随着各大互联网公司纷纷提出中台战略以及组织架构的调整,技术中台、组织中台、数据中台等各种中台的概念喷涌而出。本文主要围绕数据中台展开。
Apache Iceberg 作为面向超大型湖存储的新一代表格式,由于在元数据管理、数据时效性以及解决传统Hive在海量分区操作耗时方面具备显著优势,目前正在被越来越多的企业用户认可。如腾讯云的新一代Lakehouse产品数据湖计算 DLC,其底层存储同样基于Iceberg深度优化。
导语 | 本文推选自腾讯云开发者社区-【技思广益 · 腾讯技术人原创集】专栏。该专栏是腾讯云开发者社区为腾讯技术人与广泛开发者打造的分享交流窗口。栏目邀约腾讯技术人分享原创的技术积淀,与广泛开发者互启迪共成长。本文作者是腾讯后台开发工程师叶强盛。 引言 这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂
这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂商也纷纷推出自己的数据湖、云数据仓库、湖仓一体产品。
“以前一个客户分析特定的数据量可能需要100台机器,但用我们的方案只需要10台;原来查一周都查不了或者直接宕机,我们只需要一分钟。”
2023 年 9 月 26 日,腾讯大数据团队与 StarRocks 社区携手举办了一场名为“构建新一代实时湖仓”的盛大活动。活动聚集了来自腾讯大数据、腾讯视频、腾讯游戏、同程旅行以及StarRocks 社区的技术专家,共同深入探讨了湖仓一体技术以及其应用实践等多个备受瞩目的话题,观看人数过万。
作者 | 褚杏娟 8 月 10 日,网易数帆正式对外宣布流式湖仓服务 Arctic 开源。Arctic 是在 Iceberg 和 Hive 之上添加了更多实时场景的能力,并且面向 DataOps 提供流批统一,开箱即用的元数据服务。 Arctic 百分之百兼容 lceberg 和 Hive 的表格式语法,支持 Spark 和 Flink 读写数据,支持 Trino 和 Impala 查询数据,目前 Impala 主要用到 Hive 的兼容特性,可以把 Arctic 表作为一个 Hive 做查询,从而支持
摘要 日前,腾讯云大数据数据湖计算 DLC 与国内两家知名云厂商的数据湖产品进行了性能对比,其中腾讯云 DLC 在三款产品中SQL平均执行查询时间短,性能表现优。腾讯云大数据 DLC 在存算分离和大数据量查询场景下,海量查询性能较 A 厂商 产品提升 248%,较 B 厂商产品提升36%。 在存算分离大数据量查询场景下,腾讯云大数据 DLC 较 A 厂商 、B 厂商表现更优,同时在较大任务上的任务执行成功率更高,所有任务均成功执行。结合性能、性价比、使用体验等因素,腾讯云 DLC 在云原生数据湖选择上整体上
领取专属 10元无门槛券
手把手带您无忧上云