关于本书 数据分析是作为一名运营人员需要掌握的一项基本技能,本书基于职场三人的对话(BOSS、数据分析菜鸟、数据分析高手),从数据分析概念、作用、步奏三个方面进行阐述,是一本数据分析入门书,是数据分析新手的不二选择。 1数据分析的概念 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总和理解消化,以求最大化地开发数据的功能,发挥数据的作用。 2数据分析的作用 数据分析是把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出所研究对象的内在规律。在企业的日常经营分析中有三
这个层面追求数据的准确性,一般以静态的数据为主,主要操作是数据的录入和记录,是HR每天的基础的数据工作,比如 员工花名册,公司人员结构,每天招聘人员数据的记录,这些都是属于操作层面,对于这个层面的要求就是要准确,当老板问你公司有多少人,每个月入职多少人,离职多少人等这些静态数据的时候,你都可以准确的回答。
该图是数据分析概述部分。主要讲述了一个数据分析人应该具备哪些基本素质?有哪些职业要求?同时也讲述了数据分析的一些常用指标和述语,有哪些数据分析的类型,数据分析有什么作用,以及我们做数据分析有哪些主要流程。
1、如何做好数据分析? 分析师成长是通过“干”、"思"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀。熬:通过时间的积累,你
(1)数据分析是为了验证假设的问题,需要提供必要的数据验证。在数据分析中,分析模型构建完成后,需要利用测试数据验证模型的正确性。
数据分析这个话题自从进入人们的视线以来,这个话题就成为人们茶余饭后的谈资,但是一千个人眼中就有一千个哈姆雷特,就意味着每个人对数据分析都有不一样的理解。
【数据分析三字经】①学习:先了解,后深入;先记录,后记忆;先理论,后实践;先模仿,后创新; ②方法:先思路,后方法;先框架,后细化;先方法,后工具;先思考,后动手; ③分析:先业务,后数据;先假设,后验证;先总体,后局部;先总结,后建议; 做数据分析首先是熟悉业务及行业知识,其次是分析思路清晰,再次才是方法与工具,切勿为了方法而方法,为工具而工具。 【数据分析的3点要求】第一,熟悉业务,不熟业务,分析的结果将脱离实际,业无从指导;第二,多思考,只有经常发问为什么是这样的?为什么不是那样的?只有这样才有突破点
很多人觉得数据分析是一个很高深的技能,要学会数据分析好像要会很多专业的软件,然后要和很多的数字打交道,要逻辑感非常强,其实数据分析没有大家想象的那么复杂,通过学习你也可以学会人力资源的数据分析。
数据分析的任务必须是明确的,带着问题出发。它可以是一张简单的报表,也可以是专题或者综合分析。
数据分析是指通过收集、整理、分析和解释数据来发现数据中隐藏的信息和关系的一种方法。数据分析的目的是为了提供洞察力和指导决策。
GrowingIO 2017年 第3本电子书 《产品经理数据分析手册》 正式上线啦 点击【阅读原文】立即下载 升级你的数据分析技能! 本文选自 GrowingIO 《 产品经理数据分析手册》 ,根据张溪梦演讲内容整理编辑;原文发于GrowingIO 博客 和公众号,授权大数据文摘发布 / 转载 。 本文作者:张溪梦, GrowingIO 创始人 & CEO,原 LinkedIn 商务分析高级总监。张溪梦先后服务过EPSON、eBay、LinkedIn 等硅谷明星企业,有着 14 年的数据分析、用户增长经
明确数据分析目的以及确定分析思路,是确保数据分析过程有效进行的先决条件,它可以为数据的收集、处理及分析提供清晰的指引方向。
随着经济的快速增长,各个行业企业的各种客户数据信息、交易数据信息也成爆炸式增长,与此同时,数据分析人员也相应供不应求。 那么什么样的人能成为数据分析师呢?或者说数据分析师需要具备怎样的素质与能力呢?
掌握常用的数据分析方法论是培养数据分析思维的基础,俗话说“工欲善其事,必先利其器”,而数据分析方法论就是数据分析是最强大的武器之一。这一节会围绕数据分析常用分析方法展开,概括性地介绍数据分析师在日常工作中较为常用的数据分析方法论。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析的目的有多种,概括起来有三种:现状分析、原因分析、预测分析。现状分析简单来说就是告诉你过去发生了什么。原因分析简单来说就是告诉你某一现状为什么发生。预测分析简单来说就是预测未来会发生什么。
本篇学习整理笔记来源于:简书@功彬eleven、《谁说菜鸟不会数据分析》、公众号:杜王丹、公众号:数据分析。 在原作者的基础上进行整理分类,将本篇分为:数据分析的概念、做数据分析的原因、数据分析的作用、数据分析的逻辑、数据分析的方法、数据分析流程、数据分析的误区、专业数据分析的能力要求、数据分析的职业发展这九部分,带你全面了解数据分析。 数据分析的概念 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总和理解消化,以求最大化地开发数据的功能,发挥数据的作用。 做数据分析的原因 1、有
现在随着数据分析在各行各业的广泛应用,各种数据分析的工具软件也层出不穷,现在行业里主流的有python, 微软的BI软件 ,Tableau, Excel 等。
ArcGIS是由ESRI公司推出的一款广泛应用于地理信息系统领域的软件,提供了强大的地理数据分析和处理功能,并支持多种格式的地理空间数据。该软件除了提供基本的地图制作和编辑功能,还支持各种专业分析工具,如空间分析、网络分析、地形分析等,成为地理信息系统领域最流行和最实用的软件之一。本文将对ArcGIS的主要功能和使用技巧进行介绍,并结合实际案例进行详细说明。
我们先谈谈大数据是什么样的数据。 IBM有一个著名的5V大数据理论:Volume(大量)、Velocity(高速)、Variety(多样性)、Value(价值)以及Veracity(真实性)。简而言之,达到大规模的数据,极快的流通速度,数据类型和来源的多样性,低值密度以及可以反映事物真实性的数据就是大数据。那么大数据分析和传统数据分析之间有什么区别?亿信华辰小编给大家介绍一下。
浅谈数据分析与数据挖掘? 数据分析和数据挖掘都可以做为“玩数据”的方法论,两者有很多的共性,也有显著的差异。 从分析的目的来看,数据分析一般是对历史数据进行统计学上的一些分析,数据挖掘更侧重于
大数据价值的发现与其所处的应用场景密切相关。概括起来,大数据价值发现可以划分为三大类:数据服务、数据分析和数据探索。数据服务是面向大规模用户,提供高性能的数据查询、检索、预测等服务,通过直接满足用户需求而将数据价值变现的形式;数据分析是分析人员利用经验,通过对大规模数据使用特定的计算模型进行较为复杂的运算,从而发现易于人们理解的数据模式或规律所进行的数据价值变现的一种运算形式;数据探索是一种利用数据分析和人机交互的结合,通过不断揭示数据的规律和数据间的关联,引导分析人员发现并认识其所未知的数据模式或规律,其
具有从大数据分析及数据科学中获取独特见解的公司,可以拥有关键信息优势,从而在第四次工业革命(也称为数字时代)中蓬勃发展。
数据分析是指运用适当的方法和技巧对数据(一般数据量较大)进行分析,从看似杂乱无序或毫无关联的数据中挖掘出有价值的信息,总结出隐藏在数据背后的规律。
如今,我们面对着一道“消费者鸿沟”。没有洞识的数据是毫无价值的。国际数据中心的数据显示,企业平均分析到的数据只占其可用数据的不到1%。剩下那没有分析的99%会对公司造成什么样的影响? 今年年初,普华
用适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总和理解并加以消化,以求最大化的开发数据功能,发挥数据的作用。数据分析可用于现状分析,原因分析,预测分析。
“小李,帮我分析一下我们的贷款业务增长趋势如何?哪个分支行的表现最好?新开设的线上理财产品的销售额是多少?马上给我一个分析报告”,某大型银行的副总经理王先生,对李经理提出了这样的数据分析需求。为了完成这个任务,李经理需要从银行的数据平台中获取和分析数据,以回答领导的问题。然而,这可能涉及到一些复杂的数据操作,如连接不同的数据源(例如贷款数据库和理财产品数据库)、过滤和聚合数据、创建数据可视化图表等。
文/ 于洋 TalkingData高级咨询总监 1.3 游戏数据分析的流程 游戏数据分析整体的流程将分为几个阶段,这几个阶段则是反映了不同企业数据分析的水平,从另一个角度,也是在解析作为一名数据分析人
数据分析挖掘体系可分为数据预处理、分析挖掘、数据探索、数据展现和分析工具。 ▌数据预处理 •数据预处理包含数据清洗、数据集成、数据变换和数据规约几种方法。 •而数据清洗包括缺失值处理和异常值处理; •数据集成包括同名同义、异名同义、单位不统一的实体识别和冗余性识别。 •数据变化包括函数变换、规范化、连续属性离散化、属性沟通和小波变换。 •数据规约包括属性规约和数值规约。 ▌分析挖掘 •分析挖掘的内容就多了。包括假设检验、方差分析、回归分析、主成分分析、因子分析、典型相关分析、对应分析、多维
资深数据分析师,戴文波特在《哈佛商业评论》上的撰文《数据分析师的崛起》中提到,大数据时代的到来意味着处理庞大的数据将会在每个人的工作中,占有越来越大的比重。因此,对经理人和员工来说,数据分析和数据认知能力将变得无比重要。 此外,《埃维诺调查》中的一次报告结果显示,超过百分之六十的管理者认为他们的员工需要提高分析能力去将数据转化为洞察力和商业价值。许多行业的高管都已注意到了数据分析的重要性,并认为数据分析能力及数据分析人才是企业发展的必需品。而在真正通过数据为企业做出贡献这个问题上,分析,很多
数据分析报告是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。 一份好的数据分析报告,首先要有好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然;其次需要有明确的结论;最后需要有建议或解决方案。
人力资源的数据分析是一个系统化的学习过程,除了需要掌握基础数据分析知识外,还需要掌握EXCEL的技能和人力资源的专业能力,为了帮助大家更好的学习数据分析,我帮大家梳理了一下学习的知识,需要学习哪些内容,如何循序渐进的来学习数据分析。
最近在做项目时经常反思,我应该如何基于运营数据的应用,为大家的工作赋能,比如提高效率、或降低成本,或提升决策准确度,或多个优化组合。这过程中,我发现自己目前仍主要以工具自动化的信息化建设思维解决问题,这种自动化的解决方案其实是经验导向,从数字化角度看,企业将面临的复杂性与不确定性将越来越严峻,经验导向的工作或决策方式将越来越不可靠,这就需要培养以数据思维来思考并解决问题的能力,简单来讲就是基于“数据+算法”的量化思维模式,用客观数据作验证、预测、推荐,减少“我觉得,我想,我估计”等经验思维模式。
近年来,越来越多的人选择大数据行业,只看到了大数据行业前景不错、薪资待遇不错,而且培训项目、机构众多,各大名企对于大数据人才的需求也不断上涨。 但是没有对岗位和自身进行合理评估,求职或者入职之后或许才发现其实跟自己想的也许不一样。在入行数据分析或者任何一行之前,你都要好好思考这些问题:我希望进入哪些行业呢?这行业有前景吗?需要什么样的知识结构?符合我的兴趣方向吗? 1、职业爱好:分析需求、写代码、与人沟通、探索未知是你喜欢的吗? 2、思考能力:如何根据数据推演、分析、提出解决方案,这常常需要你脑洞大开。
随着互联网的飞速发展,信息化已经无处不在,人类正在由IT时代进入DT时代,大数据在不断影响着各个行业,即将开启一次重大的时代转型。就像蒸汽机带来工业革命一样,大数据正在改变我们的生活以及理解世界的方式,一个大规模生产、分享和应用数据的时代正在开启。 如何利用大数据改变传统安全思维,充分发挥大数据的价值,应对各种高级持续威胁和日益复杂化的网络安全形势,是对安全而言需要重点关注的问题。而大数据的真实价值就像漂浮在海洋中的冰山,第一眼只能看到冰山的一角,绝大部分都隐藏在表面之下。对与安全威胁而言也是如此,当前的
我是一个数据从业者,很早以前就想把自己在工作和学习中的心得做个总结。一方面是对自己过往经历的一个总结和回顾;一方面最近几年大数据是越来越火了,也希望自己的经验能帮到那些对数据有热情、希望从事数据行业的新人们;还有一方面,也非常重要,是希望借助知乎这个平台跟广大同行们做一个交流,互相帮助,共同成长。
在数据驱动的时代下,凭感觉、凭经验做决策的时代已经过去了,作为运营狗需要掌握一定的数据分析能力,从数据中查找问题,分析问题,解决问题。
数据治理是逐步实现数据价值的过程,具体来说,数据治理是指将零散的用户数据通过采集、传输、储存等一系列标准化的流程变成格式规范、结构统一的数据,并有严格和规范的综合数据管控;对这些标准化的数据进行进一步加工分析成为具有指导意义的业务监控报表、业务监控模型以帮助业务进行辅助决策。
很多刚开始做数据分析的朋友,不知道数据分析该如何下手,更不知道一个完整的数据分析流程有哪些环节。数据分析的流程比较简单,主要包括以下六个环节:明确分析目的、数据获取、数据处理、数据分析、数据可视化、结论与建议。
了解数据分析 1定义 · 数据分析是什么? 简单地说就是利用有限的数据通过发散的思维,利用相关关系来解释你想知道的问题。 2目的 · 数据分析干什么? 把隐藏在一对杂乱无章的数据背后的信息集中、萃取和
这个时代是大数据时代,也是大数据人才稀缺的时代。由于中国人才缺口比较大,大数据也迅速成为行业和市场的热点,更多的企业无论是对人才的招聘还是在培训都成了刚需,这也促使大数据人才的薪资在同岗位中是最高的,掌握大数据技术,工资提升40%左右是很常见的。”大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理,以提供更好的用户体验,以及优化库存,降低成本,预测需求。下面跟小编一起看看大数据培训后大家在各个领域可以从事的工作岗位及未来发展方向。 一、热门工作岗位 1、
前言:“数据(data)”已经成为21世纪商业的代名词。聚拢大量数据的浪潮正变得愈加猛烈。公司无论所属行业和规模大小,都竭力想要实现以数据为基础驱动公司内部和外部运转的自动化,将流程数字化,并且打造出企业自身的信息库,在这个过程,企业管理层必须面对的问题不在于收集了多少数据,本文通过形象的例子告诉你什么是恰当的数据,并且教你如何解读。 很多企业认为自己是数据驱动型企业,但其企业内部却并未形成一套完备的数据运营管理体系结构,往往参与数据分析的人员只是寥寥几人或者某一个部门,如果数据团队成员有太多的共同点(比如
最近听到大家说的最多的话就是,在工作中总是没有数据分析思路,我应该怎么办呢?今天就来给大家分享一下,如何锻炼自己的数据思维,还有实例模型讲解哦~
当你交给公司领导一份数据分析报告时,领导会问你的数据分析方法论是什么,如果你的方法论不正确或不合理,那么你的分析报告将没有价值可言,那么事实情况是不是这样呢?我们得从数据分析方法论的概念说起。
目录: 大数据分析的五个基本方面 如何选择适合的数据分析工具 如何区分三个大数据热门职业 从菜鸟成为数据科学家的 9步养成方案 从入门到精通—快速学会大数据分析 一、大数据分析的五个基本方面 1.可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。 2.数据挖掘算法 大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格
当今社会,数据已成为某些企业的“根”。近年来越来越多的公司意识到数据分析可以带来的价值,并搭上了大数据这趟“旅行车”。现实生活中现在所有事情都受到监视及测试,从而创建了许多数据流,其数据量通常比公司处理的速度还快。因此问题就来了,按照定义,在大数据很大的情况下,数据收集中的细微差异或错误会导致重大问题。
引言 价值要点 今年年初,普华永道发布了一份针对77国逾1300位CEO的调查。结果显示,在推动数字技术发展、提高组织能力方面,数据挖掘分析占有第二重要的战略地位,仅次于提高客户参与度的移动技术。同时,这些CEO还认为,数据分析对于提供更好的客户体验并提高业务效率来说是一最为重要的一项能力。 需要注意的是,数据本身并不能提供洞识。如果数据分析的结果无法在组织内部分享和公开,那就无法促进业务成果和运营效率的最优化。 如今,我们面对着一道“消费者鸿沟”。没有洞识的数据是毫无价值的。国际数据中心的数据显示,企业平
其实,各行各业都有自己的分析师,比如金融类的就有证券分析师、金融分析师、股票分析师;统计类的就有数据分析师、调查分析师、信息分析师……
大数据的分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
领取专属 10元无门槛券
手把手带您无忧上云