在TCP/IP协议栈中,当数据通过协议栈向下流动时,每一层都要给数据增加控制信息用于确保正确的传递。控制信息放置在被传送数据的开始,称之为包头,这种在协议栈中每一层都增加传递信息的过程称为封装。也就是说,栈中每层软件对传递的数据都要进行格式化,使之与特定的协议相适应,即每层都在上层的基础上加一个与协议相对应的包头;而当数据在协议栈中反方向(由底层向上)流动时,协议软件就以相反的方式处理数据,即每一层都剥去栈中对应层增加的包头,然后将数据传递给上一层,这就是拆封。 数据是网络和TCP/IP协议栈传输的实体和服
前言:网络知识非常的重要,如果你不是做程序的,那么一些网络常识还是得知道的;而做程序的,就更不用说了,不仅需要了解一些网络知识,还是知道其原理,如果不了解原理,不敢说他不是程序员,但是总缺了点意思,就像去北京没去过长城一样。
我们都知道,数据传输的方式有很多种。通常我们都是使用HttpClient 发起请求,传输JSON格式的数据。但是遇到数据量比较大的情况,或者需要传输比较大的XML报文时,可能就会用到Socket了。
关于对 Socket 的认识,大致分为下面几个主题,Socket 是什么,Socket 是如何创建的,Socket 是如何连接并收发数据的,Socket 套接字的删除等。
在浏览器生成消息以后,他就要通过调用 Socket 库中的系统调用,委托操作系统协议栈将消息发送出去了,这就是我们今天这篇文章的重点内容。
数据包在服务器的处理分接收和发送两个方向,收包方向因为我们自己本身的业务场景涉及收包数据很少,后续另行介绍。 本文主要介绍F-Stack发包方向上当前的零拷贝处理方案、效果和应用场景的选择,发包方向上的数据拷贝目前主要为两个阶段,一是协议栈数据拷贝到DPDK的rte_mbuf中,二是应用层调用socket发送接口时会将数据从应用层拷贝到FreeBSD协议栈,下面将分别进行介绍。 协议栈到DPDK 该过程的零拷贝实现由 @jinhao2 提交的Pull Request #364 合并到F-Stack主线中,相
套接字链接在表面上看就是建立连接,交换数据,断开连接,虽然实际上细节肯定没有那么简单,但是大体上的思路基本不变。
我们基本上从宏观角度描述了,应用层是如何构建通信消息、查询服务端IP地址的。今天,我们着重讲讲,在客户端准备好通信消息后,是如何委托OS的协议栈进行后续的处理。也就是,Socket如何处理从客户端拿到数据,并将其转发到协议栈。
Netfilter/iptables是Linux内核内置的报文过滤框架,程序可以通过该框架完成报文过滤、地址转换(NAT)以及连接跟踪等功能。
本系列文章前面那些主要讲解的是计算机网络的理论基础,但对于即时通讯IM这方面的应用层开发者来说,跟计算机网络打道的其实是各种API接口。
计算机网络学习的核心内容就是网络协议的学习。网络协议是为计算机网络中进行数据交换而建立的规则、标准或者说是约定的集合。计算机网络协议同我们的语言一样,多种多样。
最近使用tcpdump的时候突然想到这个问题。因为我之前只存在一些一知半解的认识:比如直接镜像了网卡的包、在数据包进入内核前就获取了。但这些认识真的正确么?针对这个问题,我进行了一番学习探究。
原文:https://blog.csdn.net/TaoTaoFu/article/details/77748229
当时有些地方写的比较笼统,然后我「把 Linux 接收+发送网络包的流程」这部分内容完善了下,现在重新分享给大家。
1.协议栈根据上层传递的服务器ip端口确定 要链接的服务器sicket, 填充tcp头部信息(发送接受方ip端口信息)并将syn设置为1,修改的socket状态为正在连接
Request:Method + URI Response: Status Code + Header + Body + .......
TCP和IP协议承载了整个互联网的生命线,这一章算是本书核心部分,掌握这两个协议也是学好网络编程的基础。
不管是OSI还是TCP/IP5层协议栈,均会出现应用程序和操作系统边界(代码执行在用户态/内核态)。
1.发送方协议栈根据DNS提供的服务器ip端口确定和服务器通信使用的socket套接字, 填充tcp头部信息(发送接受方ip端口信息),将syn设置为1,修改当前socket状态为正在连接
封装:当应用程序用 TCP 协议传送数据时,数据首先进入内核网络协议栈中,然后逐一通过 TCP/IP 协议族的每层直到被当作一串比特流送入网络。对于每一层而言,对收到的数据都会封装相应的协议首部信息(有时还会增加尾部信息)。TCP 协议传给 IP 协议的数据单元称作 TCP 报文段,或简称 TCP 段(TCP segment)。IP 传给数据链路层的数据单元称作 IP 数据报(IP datagram),最后通过以太网传输的比特流称作帧(Frame)。
在数据的发送过程中,从上至下依次是“加头”的过程,每到达一层数据就被会加上该层的头部;与此同时,接受数据方就是个“剥头”的过程,从网卡收上包来之后,在往协议栈的上层传递过程中依次剥去每层的头部,最终到达用户那儿的就是裸数据了。
F-Stack是一个全用户态(kernel bypass)的高性能的网络接入开发包,基于DPDK、FreeBSD协议栈、微线程接口等,适用于各种需要网络接入的业务,用户只需要关注业务逻辑,简单的接入F-Stack即可实现高性能的网络服务器。 本文介绍F-Stack的详细架构及如何解决内核协议栈面临的问题。 传统内核协议栈的性能瓶颈 在传统的内核协议栈中,网络包处理存在诸多瓶颈,严重影响网络包的收发性能。性能瓶颈主要包括以下几个方面 局部性失效 - 一个数据包的处理可能跨多个CPU核心、缓存失效、NUM
网络应用程序如果要发送很大的数据包,经过内核协议栈的时,大包会被分片成多个不超过MTU长度的包。这个分片比较费CPU资源。Offload技术可以把这些分片和合并的工作进行优化处理,也可以直接Offload到网卡上。
很高兴大家回到这次深潜之旅,让我们继续挖掘 NGINX 的潜力。今天我的分享包括四个部分。首先从整体上来看一下 NGINX的协议栈如何进行优化。接着我们将按照 OSI七层网络模型,自上而下依次讨论HTTP协议栈、TLS/SSL协议栈以及TCP/IP协议栈。
IPv6技术在国内沉寂数十年后,在国家推进下重新登上重要舞台。2018年工业和信息化部发布了关于贯彻落实《推进互联网协议第六版(IPv6)规模部署行动计划》的通知。不但展示国家推动IPv6的决心,更对各大运营商和公有云厂商提出了IPv6的改造目标:到2018年末,腾讯云、金山云、网宿科技、蓝汛、帝联科技完成内容分发网络(CDN)IPv6改造;云服务平台企业完成50%云产品IPv6改造。到2020年末,上述企业完成全部云产品IPv6改造。
计算机数量更多了,通过交换机和路由器连接在一起。如下图,路由器的左右侧都是一个局域网,两个局域网用路由器连接起来,构成局域网LAN;在局域网内部,对应的主机用交换机可以互相转化消息;跨局域网经过路由器+交换机进行数据转化。数据经过交换机发现不是本网络的,直接交给路由器,路由器再在对应的子网当中,找到对应的主机。
sk_buff 是一个贯穿整个协议栈层次的结构,在各层间传递时,内核只需要调整 sk_buff 中的指针位置就行。
如果1台或者几台服务器,我们可以通过 linux命令,tail、cat,通过grep、awk等过滤去查询定位日志查问题
OSI参考模型(OSI/RM)的全称是开放系统互连参考模型(OpenSystemIntercon网络
之前在做一个关于数据传输的时候,使用到了 WiFi 传输数据,而在传输数据时使用到的协议就是 LwIP 协议栈中的 udp 协议。现在来回顾总结一下。要叙述 LwIP 协议栈,那自然得明白 LwIP 协议栈具体是个啥。总的来说,LwIP 是 TCP/IP 协议中一种独立、简单的实现,其设计目的在于保证嵌入式产品拥有完整 TCP/IP 功能的同时,又能够保证协议栈对处理器资源的有效消耗,其运行一般仅需要几十 KB 的 RAM 和 40KB 左右的 ROM。上述所说便是关于 LwIP 协议栈的相关叙述。
内核显然需要一个数据结构来表示报文,这个结构就是 sk_buff ( socket buffer 的简称),它等同于在<TCP/IP详解 卷2>中描述的 BSD 内核中的 mbuf。
以前在研究 k8s 网络的时候,很多东西都看不太懂,只是蜻蜓点水过一下,这段时间打算恶补一下虚拟网络方面的知识,感兴趣的不妨一起探讨学习一下。
虽然jolokia是为了满足JSR-160的要求,但是他和JSR-160连接器有巨大的差异。其中最引人注目的区别是jolokia传递数据是无类型的数据(说白了就是使用了Json数据传递,替代了RMI传递Java序列化数据的方式)。
本文介绍了 F-Stack 框架,它是一个基于 FreeBSD 内核的用户态协议栈实现,解决了传统内核协议栈在高性能、可扩展、兼容性、功能完备等方面的问题。F-Stack 提供了丰富的功能,包括零拷贝、无锁队列、内存池、红黑树等,支持多种调度算法,并提供了易用的接口。在性能测试中,F-Stack 的表现优异,最高达到了 2000 万 QPS,并支持多种网络协议,包括 HTTP、TCP、UDP、IPX 等。同时,F-Stack 也提供了丰富的开发文档和示例代码,方便开发者进行二次开发和功能扩展。
在现代计算环境中,虚拟网络设备在实现灵活的网络配置和隔离方面发挥了至关重要的作用🔧,特别是在容器化和虚拟化技术广泛应用的今天🌐。而Linux网络协议栈则是操作系统处理网络通信的核心💻,它支持广泛的协议和网络服务🌍,确保数据正确地在网络中传输。本文将深入分析虚拟网络设备与Linux网络协议栈的关联,揭示它们如何共同工作以支持复杂的网络需求。
本章介绍蓝牙协议(重点介绍:BLE)的基本特点、版本演进、协议的构成、等基础知识,本章重在了解,目的是对BLE协议有个大概的认知,即了解BLE协议栈的全貌。后续的章节会对每一部分单独进行详细的讲解。
大家好,又见面了,我是你们的朋友全栈君。 1. 什么是Zigbee协议栈 ? 什么是 ZigBee 协议栈呢?它和 ZigBee 协议有什么关系呢?协议是一系列的通信标准,通信双方 需要共同按照这一标
作为网络领域的开发人员,我们经常要与Linux的数据报文打交道,一定要搞清楚数据报文是从何而来,又是如何离去。以前针对这个主题写过一些文章(主要是从源码角度),这次会更重视流程示意图(在细节上必然有所简化),争取在一篇文章中,就让大家理清数据报文的来龙去脉。
网络协议指的是计算机网络中用于数据传输和交换的规则和标准。网络协议规定了数据传输的格式、流程、通信规则和错误处理等内容,保证了网络数据的正常传输和正确交换。
协议是一系列的通信标准,通信双方需要按照这一标准进行正常的数据发射和接收。协议栈是协议的具体实现形式,通俗讲协议栈就是协议和用户之间的一个接口,开发人员通过使用协议栈来使用这个协议,进而实现无线数据收发。
一般而言,我们把某个协议的实现代码称为协议栈(protocol stack),BLE协议栈就是实现低功耗蓝牙协议的代码,理解和掌握BLE协议是实现BLE协议栈的前提。在深入BLE协议栈各个组成部分之前,我们先看一下BLE协议栈整体架构。
前面几篇文章讲解的是应用程序使用Socket间接通知协议栈进行的连接,通信阶段,那么从现在开始讲解协议栈和网卡驱动的故事
子虚期望让云上的虚拟机背起记忆的行囊浪迹天涯,但却发现虚拟机如果采用本地磁盘根本无法自由迁移,而基于FC的共享存储方案又具有极大的局限性。子虚自行思考答案,却发现自己的思考和Ceph殊途同归……
作者 | 汪翰林 编辑 | 蔡芳芳 Redis 作为最受欢迎的 NoSQL 数据库之一,具备高性能、高可用性、高扩展性等特点,在各互联网业务中使用广泛。目前业界针对 Redis 的性能优化主要针是配置项优化以及使用方式的优化。本文介绍网易数帆尝试撇开 Redis 本身,而从通用的协议栈层面来做优化,这种优化方式理论上可推广到其他 Socket 类互联网应用,如 Memcached、Ngnix、Envoy 等。 分 析 Redis-server 作为一个标准的 Socket 类应用,会通过监听地
领取专属 10元无门槛券
手把手带您无忧上云