【大数据100分】冯一村:数据可视化的魅力 主讲嘉宾:冯一村 主持人:中关村大数据产业联盟 副秘书长 陈新河 承办:中关村大数据产业联盟 嘉宾介绍: 冯一村:海云科技创始人 。海云数据是一家做数据可视化的的初创公司。海云数据是“微软创投加速器”第四期入驻的企业。 以下为分享实景全文: 冯一村:大家好,很高兴在微信的平台上和大家来交流。在群里面,大家都是大数据方面的专家,而海云数据还只是一家创业公司,还请大家多多支持。我是海云数据的冯一村。 下面正式进入主题,我们知道大数据的概念已经很火爆了,也看到大家
随着我们进入大数据时代的步伐越来越快,海量数据深度分析的重要性与日俱增,许多应用程序积累了大量消费者的行为数据,急需将这一大堆密密麻麻的数字转化为有价值的图表形式,可以更直观地向用户展示数据之间的联系和变化情况,减少用户的阅读和思考时间,以便很好地做出决策。目前 互联网中有很多成熟的商用数据可视化工具,但是由于价格昂贵,让众多中小型企业和个人用户望而却步。今天小编为大家整理了码云上开源的数据可视化软件,希望能够帮助到大家。 如果大家有与数据可视化相关的开源项目,也可以托管到码云上,我们会及时给予推荐。最后,
在业务设置中,数据可视化工具可以帮助可视化业务流程生成所有数据,并创建仪表板来跟踪几乎所有的内容。数据可视化工具还可以完美地使用特定事件、项目、分析和信息的数据创建图形。
最近在项目上常常听到这样的话:“我想要一个酷炫的数据大屏”,“设计一定要有科技感”,“这个可视化设计没有重点”……每当听到这些需求,作为设计师一般都是欲哭无泪的。到底什么叫酷炫有科技感?客户理解的数据大屏什么样?是数据还是可视化出了问题?? 这篇文章将会结合最近在数据可视化项目上的一些经历,从设计的角度,聊一聊什么是数据可视化,为什么需要可视化设计,以及该从何处着手来设计一个数据可视化平台。 1. 什么是数据可视化设计?(WHAT) 在聊如何设计数据可视化平台前,想先聊一下我所理解的数据可视化。“数据可视化
数据可视化到底是什么?需要具备什么样的能力?工作内容应该有哪些?其实数据本身没有意义,只有对实体行为产生影响时才成为信息。
你想了解更多关于数据可视化的理论知识和历史背景吗?你想受到令人惊叹的可视化示例的启发吗?你希望能够创建更有效的可视化效果吗?或者你是否有兴趣从权威部门获取有关数据可视化的信息吗?
过去几年,对数据以及数据分析的关注可谓达到了一个新的高度。如今,数据和信息已经成为一种可以带来绝妙视觉观感的工具。曾经简单的图表和散点图,现在已经成了数据艺术中复杂并且极具创造力的一部分,美到甚至可以用来作为墙饰。
数据可视化是将信息转换为可视化上下文(例如地图或图形)的实践,以使人脑更容易理解数据并从中获取见解。数据可视化的主要目标是更容易识别大型数据集中的模式、趋势和异常值。该术语通常与其他术语互换使用,包括信息图形、信息可视化和统计图形。
导读:过去几年,对数据以及数据分析的关注可谓达到了一个新的高度。如今,数据和信息已经成为一种可以带来绝妙视觉观感的工具。曾经简单的图表和散点图,现在已经成了数据艺术中复杂并且极具创造力的一部分,美到甚至可以用来作为墙饰。
这学期(2018学年春季学期)我教授了一门关于数据可视化的数据科学硕士课程。我们的数据科学硕士项目是一个为期15个月的强化项目,这个项目已经成功地培养了许多优秀的数据科学家。
我教授了一门关于数据可视化的数据科学硕士课程。我们的数据科学硕士项目是一个为期15个月的强化项目,这个项目已经成功地培养了许多优秀的数据科学家。
AI 科技评论消息,1 月 16 日,百度 ECharts 团队发布旗下知名开源产品 ECharts 的最新 4.0 版本,并宣布品牌升级为「百度数据可视化实验室」(http://vis.baidu.com/)。除了这两大消息外,团队还正式发布深度学习可视化平台 Visual DL,以及其他一系列重量级产品,包括 ECharts GL 1.0 正式版,ZRender 4.0 全新版本,WebGL 框架 ClayGL 等。 百度数据可视化实验室的产品矩阵如下图所示,内容涵盖基础库、各种可视化产品以及应用产品。
陈为,现任浙大计算机学院副院长、CAD&CG国家重点实验室教授,中国数据可视化领域的顶级学者。他领导的浙大VAG小组,多次在世界顶级可视化会议IEEE VIS发表重要论文。其编著的《数据可视化》一书,填补了中国在系统介绍数据可视化的基本理论和方法上的空白,成为可视化领域的经典参考书目。他经历了中国的数据可视化研究在过去二十多年里的曲折变化,他的故事,一定程度上也展现了中国“数据可视化”历史的缩影。
Navisworks是一款由Autodesk开发的三维协同和可视化软件,它可以帮助用户在建筑、工程和制造等领域中进行项目协调和监控。作为产品经理,我认为Navisworks具有以下四个优点:
说到数据可视化,大家可谓耳熟能详,设计师、数据分析师、数据科学家等,都用各种方式各种途径做着数据可视化的工作。
数据可视化的道路上充满了不可见的陷阱和迷宫,最近ClearStory Data的两位数据可视化开发人员分享了他们总结出来的数据可视化开发的7个不宣之秘,普通开发者了解这些方法能提升视野,少走弯路。 数据可视化, 特别是基于Web的数据可视化的时代已经到来了。 类似JavaScript的可视化库如D3.js,Raphaël,以及Paper.js,以及最新浏览器所支持的如Canvas和SVG,以及使得那些过去只能由计算机专家和专业设计人员开发的复杂的可视化变得越来越简单了。 数据可视化如今成为了很多网站项目
数据可视化是将数据转化为图形、图表和可视元素的过程,旨在帮助人们更好地理解数据、发现模式并得出洞察。在信息时代,数据可视化已经成为解决复杂问题、支持决策制定和传达信息的不可或缺的工具。本文将深入探讨数据可视化的重要性、不同类型的可视化方法、最佳实践以及如何有效地利用数据可视化来解锁数据的潜力。
“PDFMV框架是问题-数据-特征-模型-价值五个英文字母的首字母组合而成,它是以问题为导向,数据为驱动,利用特征和模型从数据中学习到知识,以创造价值的系统化过程。”
数据可视化:把相对复杂的、抽象的数据通过可视的、交互的方式进行展示,从而形象直观地表达数据蕴含的信息和规律。数据可视化是数据空间到图形空间的映射,是抽象数据的具象表达。
数据可视化:把相对复杂的、抽象的数据通过可视的、交互的方式进行展示,从而形象直观地表达数据蕴含的信息和规律。 数据可视化是数据空间到图形空间的映射,是抽象数据的具象表达。 数据可视化交互的基本原则:总览为先,缩放过滤按需查看细节。
数据可视化的道路上充满了不可见的陷阱和迷宫,最近ClearStory Data的两位数据可视化开发人员分享了他们总结出来的数据可视化开发的7个不宣之秘,普通开发者了解这些方法能提升视野,少走弯路。 数据可视化, 特别是基于Web的数据可视化的时代已经到来了。 类似Ja vaScript的可视化库如D3.js, Raphaël, 以及Paper.js, 以及最新浏览器所支持的如Canvas和SVG, 以及使得那些过去只能由计算机专家和专业设计人员开发的复杂的可视化变得越来越简单了。 数据可视化如今成为了很
大数据文摘作品 编译:汪小七、惊蛰、蒋宝尚 一张图片最大的价值在于它让我们注意到了我们从来不奢望看到的景象。 ——John W.Tukey 在文章开篇之前,文摘菌引用John W.Tukey的一句话来论述数据可视化的重要性。正如这句名言所说,对数据有效的展示能够极大提高我们的洞察力。 现在虽然数据可视化仍然具有巨大的前景,且近十年来它也一直是一门主流学科,但目前它依然不够成熟。 现已有大量的可视化工具可供使用,数据科学家们也正在使用这些工具,但在企业中能有效使用数据可视化工具的还是很少。 多亏了数据
数据可视化是科学、艺术和设计的结合,当枯燥隐晦的数据被数据科学家们以优雅、简明、直观的视觉方式呈现时,带给人们的不仅仅是一种全新的观察世界的方法,而且往往具备艺术作品般的强大冲击力和说服力。如今数据可视化已经不局限于商业领域,在社会和人文领域的影响力也正在显现,以下我们将介绍的是是个让人耳目一新、拍案叫绝的数据可视化项目。 一、富人区、穷人区 “富人区、穷人区”是一个互动地图项目,能直观显示美国每个城市的居民收入和房租水平,不同的颜色谱系代表着不同区域的收入水平,你可以搜索每个州、每座城市甚至每个街区的收入
如何搭建数据可视化系统,用丰富的设计语言清晰表达复杂和庞大数据,并形成鲜明的设计风格?我们把数据可视化的元素进行拆分并建立相应的规范体系。 图表设计 1. 图表基本类型 六种基本图表涵盖了大部分图表使用场景,也是做数据可视化最常用的图表类型: 柱状图 分类照片照片什么照片什么什么项目之间的比较; 饼图 构成即部分占总体的比例; 折线图 随时间变化的趋势; 条形图 分类照片照片什么照片什么什么项目之间的比较; 散点图 相关性或分布关系; 地图 区域之间的分类照片照片什么照片什么什么比较
数据可视化是关于数据视觉表现形式的科学技术研究,它的主要目标是将大量复杂的数据集提取为可视化图形,以便用户轻松地理解数据中的复杂关系。它经常与信息图形、统计图形和信息可视化等术语互换使用。
为加快“数字政府”改革和智慧城市建设,广州创新打造“穗智管”城市运行管理平台,建成广州市智慧城市运行中心。一个“超级大脑”实现全方位赋能、全时域感知、全维度治理,有望实现超大型城市的全周期数字化治理,助力老城市焕发新活力。
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
据可靠的内部消息,由百度ECharts团队研发,一个基于web的可视化数据分享平台——“百度图说”(tushuo.baidu.com)将在8月26日中午上线,目前内测阶段仅开放了500个注册用户名额,可以通过在新浪微博上关注ECharts官方微博(http://weibo.com/echarts),并转发“百度图说”上线微薄内容获得内测邀请码(详见官方微博获取邀请码说明)。 大数据文摘抢先为大家带来“图说”背后的故事。 原本仅作为服务百度商业系统的商业级图表库ECharts以开源项目形式对外发布后得到了业界
导读:通过图形化手段清晰地传达数据,促进信息的传递与沟通,是数据可视化的基础要素,也是设计美学和功能相结合的具体表现形式。Davinci便是这样一款可视应用平台。在敏捷大数据(Agile BigData)理论的背景下,围绕“数据视图”和“可视组件”两个核心概念设计,支持多种可视化功能。Davinci具体的设计理念和功能特点都有什么呢?它又将怎么成长呢?让我们一起来阅读本文吧~
ArcGIS 是一款被广泛应用于地理信息系统(GIS)的软件,它具有独特的功能,如数据可视化和分析、空间分析和可视化、3D 地图制作等。在本文中,我们将通过实际案例,举例说明 ArcGIS 的几个独特功能,并介绍其在实际应用中的价值。
点击关注公众号,Java干货及时送达 来源:https://blog.csdn.net/hwhsong/article/details/80805511 数据可视化: 把相对复杂的、抽象的数据通过可视的、交互的方式进行展示,从而形象直观地表达数据蕴含的信息和规律。数据可视化是数据空间到图形空间的映射,是抽象数据的具象表达。 数据可视化交互的基本原则:总览为先,缩放过滤按需查看细节。 大屏数据可视化是当前可视化领域的一项热门应用,通常可以分为信息展示类、数据分析类及监控预警类。 大屏数据可视化应用的难点并
该文总结了技术社区在数据可视化方面的一些实践和思考。通过具体案例,介绍了数据可视化的概念、设计原则、图表类型、颜色和字体等方面的实践,并探讨了数据可视化的极限处理。
有幸看到了这篇关于数据可视化学习的指导文章,由于原作链接访问异常,只得从百度快照中看到原文,所以这里搬运过来,特此声明本文系【转载】,在此感谢原作者,以下为原文正文(略有删减)。
数据可视化在当下信息时代已经成为炙手可热的话题,而 B/S 化趋势,也使得许多大屏应用上在网页端出现,今天给大家分享一套不一样风格的大屏页面,与传统深蓝色不同,这次采用了暗红色设计,搭配粉色及黄色,加入了一些工业元素,让页面有别具一格的效果。而 Hightopo 独特的自适应机制,也解决了大屏需要针对分辨率设计的困扰,达到了可以一页用多屏的效果。
数据可视化是数据领域一个非常重要的应用。而结合了数据可视化和数据探索功能的BI(商业智能)工具,更是被各大公司青睐。但是,由于数据可视化工具的开发成本过高,长期以来一直是商业化的BI工具处于垄断地位。 那么,有没有优秀的开源数据可视化与数据探索平台呢? 今天为大家推荐的开源项目,就是极为优秀的数据可视化项目,Github标星高达55K。让我们一起来看看吧~
早就有人称赞过DT君的数据可视化是业界清流,也经常有想要入门的同学前来求教。那么,作为一名专业的可视化设计师,如何能够结合具体业务做出炫酷的可视化作品呢?
导读:数据可视化可以通过视觉形式来呈现抽象的数据信息,有利于对数据进行更深入的观察和分析,除了使用现有的可视化软件和工具,也可以用编程定制属于自己的数据可视化,本文推荐五个技巧教你用编程实现数据可视化
简单说数据可视化的本质是将数据通过各种视觉通道映射成图形,可以使得用户更快、更准确的理解数据。
数据可视化能准确而高效、精简而全面地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。
HelloGitHub 推出的《讲解开源项目》[1]系列,今天给大家带来一款基于 Java 语言的数据可视化库开源项目——Tablesaw
每每提到数据可视化,大家脑中可能会浮现很各种图表、西装革履的分析师、科幻大片中酷炫的仪表。
当然,还有很多其它基于.NET Core开发的开源数据可视化项目,这里再列出一些:
2018年5月10-12日,第九届中国数据库技术大会将如约而至。本届大会以“数领先机•智赢未来”为主题,设定2大主会场及22个技术专场,邀请来自国内外互联网、金融、教育等行业百余位技术专家,共同探讨Oracle、MySQL、NoSQL、大数据、机器学习、区块链、数据可视化等领域的前瞻性热点话题与技术。
【导读】 数据可视化, 特别是基于Web的数据可视化的时代已经到来了。类似JavaScript的可视化库如D3.js, Raphaël, 以及Paper.js, 以及最新浏览器所支持的如Canvas和SVG, 以及使得那些过去只能由计算机专家和专业设计人员开发的复杂的可视化变得越来越简单了。然而, 对于数据可视化的开发者来说, 依然有很多挑战要去面对。 这些迎接这些挑战的方法, 则是很多专业的数据可视化开发者不愿意让别人知道的秘密。 ClearStory Data的两位数据可视化开发人员Nate Argri
前言 今天,大数据已无所不在,并且正被越来越广泛的被应用到历史,政治,科学,经济,商业甚至渗透到我们生活的方方面面中,获取的渠道也越来越便利。通过本系列的前面几篇文章,我们已经了解了数据可视化的必要性,而目前市面上也已经具备了非常多成熟的BI绘制工具,如画面,QlikView的的和魔镜等等。虽然这些工具正在变得越来越自动化,然而,随着大数据时代的来临,信息每天都在以爆炸式的速度增长,其复杂性也越来越高;其次,随着越来越多科学可视化的需求产生,地图,3D物理结构等技术将会被更加广泛的使用。所以,当人类的认知能
本文将给大家介绍一些数据可视化的基础知识。点击阅读原文来访问。 我多次被炫目的数据可视化或信息可视化震惊,在我知道这些图片背后的数据来源和创造历程后,更是为之诧异不止。它涉足制图学、图形绘制设计、计算机视觉、数据采集、统计学、图解技术、数型结合以及动画、立体渲染、用户交互等。相关领域有影像学、视知觉。空间分析、科学建模等。 这是创造性设计美学和严谨的工程科学的卓越产物。用极美丽的形式呈现可能非常沉闷繁冗的数据,其表现和创作过程完全可以称之为艺术。所以我翻译了来自SM上的3篇数据可视化和信息图形的文章,主要是
领取专属 10元无门槛券
手把手带您无忧上云