作为一名互联网技术爱好者,我对数据的探索充满热情。在本文中,我将以豆瓣读书为案例,详细介绍如何利用Python爬虫、Pandas和Excel这三大工具,一键化地实现数据采集和存储。豆瓣读书作为一个备受推崇的图书评价平台,拥有大量的书籍信息和用户评价数据,适合我们展示数据处理过程。
前面讲了很多期的爬虫、数据分析、数据可视化。其中关键的一环就是爬虫,如果数据爬取不下来就无法进行分析和可视化。
最近一直在看论文,也有很久没有coding了,感觉对爬虫的技术有些生疏,我觉得即使现在手头没有在做这方面的东西,经常爬点对技术保鲜还是很重要的。所以这次我打算爬链家的房价数据,目的主要是对爬虫和Python的东西作一个巩固,然后做一个分析。
日志文件,是我们记录用户行为的重要手段。而对于不同的用户,我们往往又会根据IP来区分,所以统计日志文件中的IP访问,对于数据分析人员和相关运营专员来说,是一件重要的事情,这里,采用python这门语言来完成这个小功能。
本基于网络爬虫+javaweB的职业岗位大数据分析平台,系统主要采用python,java,springboot,mybatis,mysql数据库,html页面开发技术,系统前端界面主要采用echarts,html,css,javascript等技术实现,系统管理端界面主要采用JavaWeb技术实现,系统岗位数据主要采用Python开发网络爬虫程序采集前程无忧招聘网实现。
有奖转发活动 回复“抽奖”参与《2015年数据分析/数据挖掘工具大调查》有奖活动。 打开电视,央视主播都开始说“大!数!据!”了! 这样一个时代,不说大数据是屌~丝,总提大数据是土~鳖。 要怎么
百万业者翘首企盼的“大数据时代装13指南”终于来了,“六条干货”为您打造高处不胜寒的绝妙意境~~
爬虫解析数据有很多种,爬取不同的数据,返回的数据类型不一样,有html、json、xml、文本(字符串)等多种格式!
原作者 Alex York 编译 CDA 编译团队 本文为 CDA 数据分析师原创作品,转载需授权 前言 在大数据时代,很多公司开始利用数据、分析数据,以协助自己做出正确的市场决策。数据的来源多种多样,而社交媒体是一个重要的数据来源渠道。那么国外的公司是如何挖掘社交媒体数据的呢? ---- 在小学时,我们的数学老师不断告诉我们“展示我们的成果”。对于社交媒体营销人员和广告商来说,亦是如此。 如今,在证明社交媒体有很大的投资回报率(ROI)时,我们同样需要把成果展示出来。但令人难以置信的是仍有一些企业并不把社
随着全力拼经济的号角吹响,扩内需、促消费、提振经济已经成为当下的主旋律。扩大消费不仅需要政策层面的细致引导,还需要不断挖掘新的消费热点来激发消费市场潜力。为响应政策,尽快恢复和扩大国内消费需求,提振经济发展信心,京东百亿补贴3月6日晚8点全面上线,他们都在讨论,京东上线百亿补贴策略目标是对标拼多多,毕竟之前看到百亿补贴大家都立马想到的是拼多多,看来价格战似乎又要在电商巨头间打响。
理论学习都是枯燥的,我们学习了初步的网络编程后,再来了解一下爬虫吧,网络爬虫可以极大增强趣味性。
讲道理,pyspider确实是一款优秀的爬虫框架,我们可以利用它快速方便地实现一个页面的抓取。
极客猴,热衷于 Python,目前擅长利用 Python 制作网络爬虫以及 Django 框架。
Mr. Ranedeer 是一个个性化的 AI 辅导项目,主要功能包括使用 GPT-4 生成定制化提示,为用户提供个性化学习体验。其核心优势和特点包括:
1.1 从 IT Operation Management (ITOM) 到 IT Operation Analytics (ITOA)
当我刚接触 Python 时,我已经被 Python 深深所吸引。Python 吸引我的地方不仅仅能用其编写网络爬虫,而且能用于数据分析。我能将大量的数据中以图形化方式呈现出来,更加直观的解读数据。
一、豆瓣音乐 今天爬的是豆瓣音乐top250,比较简单,主要是练练手。 1、加了请求头,本来没加,调试几次突然没数据了,加了请求头开始也没好,后来又好了,可能是网络原因; 2、这次是进入信息页爬的数据
本文就从数据采集、数据清洗、数据分析与可视化三部分来看看新的一年里房市的一些问题。 数据采集: 数据采集即从网页上采集我们需要的指定信息,一般使用爬虫实现。当前开源的爬虫非常多,处于简便及学习的目的,在此使用python的urllib2库模拟http访问网页,并BeautifulSoup解析网页获取指定的字段信息。本人获取的链家网上的新房和二手房数据,先来看看原始网页的结构: 首先是URL,不管是新房还是二手房,链家网的房产数据都是以列表的方式存在,比较容易获取,如下图:
近日一篇名为 Excel界地震 微软宣布 跨4代人34岁的 VLOOKUP 退休 刷爆朋友圈,几小时就像病毒一样传播起来并很快得到了10W+的阅读,太香了。几乎所有和 Excel 有关的公众号都在发与 VLOOKUP 及 XLOOKUP 有关的文章,这还不够说明地震的嘛。一个小小的 VLOOKUP 其实可以洞悉到人们对 Excel 的依赖度之广之深。
一般来说这部分的考核主要是,考察你们的Python 爬虫(在没有数据的情况下)、Python pandas 基础数据分析、matplotlib 绘制直方图、饼状图、散点图和误差线图等多种图形,我总结了一下:
很多小伙伴希望可以学习可视化大赛作品,尤其是最高级别获奖选手的作品。我们在此前的直播活动中,一起学习了相关作品,也采访了作品的选手,的确收获很大。但真正的学习,还是希望可以看到作品的一切,包括:数据,设计,技巧,公式等一切,也就是源文件。
最近系统地学习了正则表达式,发现正则表达式最大的应用之一——网络爬虫之前一直没有涉猎,遂借此契机顺带写一个爬虫的demo备用。选择对象是CSDN排行榜前100用户,各自按访问量从高到低排序的前20篇文章,使用一些简单的数据分析手段看看技术热点,方便今后拓宽技术栈。
数据森麟公众号收到读者来稿,一篇关于《爱情公寓》电影版的数据分析,在此向张凡幸同学表示感谢。
最近闲来无事,看到数据森麟公众号分享的有关《西虹市首富》的猫眼电影评论分析,恰巧《爱情公寓》电影版上映,10年青春,来看看大家是怎么去吐槽的。
直接来点儿干货吧 对于Python开发环境的安装,语言规则的熟悉过程就不说了,绝大部分Python教材都会讲到,简单说一下我目前使用的版本: Python使用最新的3.6版本,开发环境使用的是Pycharm 2017。基于Windows7环境,Mysql5.3,pip3 自动安装了pymysql,BeautifulSoup等模块。 第一周,通过几十行代码实现了猎聘网人选搜索记录的获取。 import requests from bs4 import BeautifulSoup import re imp
百度指数(Baidu Index)是以百度海量网民行为数据为基础的数据分析平台,是当前互联网乃至整个数据时代最重要的统计分析平台之一,自发布之日便成为众多企业营销决策的重要依据。
这篇文章是我最近刚做的一个项目,会带领大家使用多种技术实现一个非常有趣的项目,该项目是关于苹果机(iphoneX)的销售数据分析,是网络爬虫和数据分析的综合应用项目。本项目会分别从天猫和京东抓取iphoneX的销售数据(利用 Chrome 工具跟踪 Web 数据),并将这些数据保存到 Mysql 数据库中,然后对数据进行清洗,最后通过 SQL 语句、Pandas 和 Matplotlib 对数据进行数据可视化分析。我们从分析结果中可以得出很多有趣的结果,例如,大家最爱买的颜色是,最喜欢的是多少G内存的iphoneX等等,当然本文介绍的只是一个小的应用,时间够的话如果大家刚兴趣可以进一步进行推广。
土地市场数据一般会公示在当地的公共资源交易中心,但经常会出现只公示当周或当月数据的情况,因此,我们得去找专业的土地网站获取交易数据。比如土流网:https://www.tudinet.com/market-0-0-0-0/
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。
如果你已经处理过文本数据并应用过一些机器学习算法,那么你肯定了解「NLP 管道」是多么复杂。
自然语言功能的加强。在这之前,问答的Web端入口在仪表板,不能与报表层交互,也不能存储问题;Desktop端双击提问虽然很灵活,但是只服务于分析师,无法惠及报告阅读者。
回家很久了,实在熬不住,想起来爬点数据玩一玩,之前自己笔记本是win7加ubuntu16.04双系统,本打算在ubuntu里写代码的,可是回到家ubuntu打开一直是紫屏,百度知乎方法用了也没解决,厉害的兄弟可以教下我哦,过年有红包哦!!然后就还是在win7下开始写代码了(电脑太卡,一直不想装Python),今天爬的是豆瓣音乐top250,比较简单,主要是练练手。 代码 import requests import re from bs4 import BeautifulSoup import time i
本文主要讲Python最常见的应用之一——网络数据获取,即爬虫: 先介绍了网页和网络的基础知识,为从网页中获取数据打好基础;接下来以两个案例介绍从网络中获取数据和处理数据的不同方式,以进一步认识Python爬虫和数据处理。
黑洞刷屏已经持续了好多天,黑洞照片并不是大家所认为的拍出来的,而是通过望远镜阵列采集的数据并使用一定的算法进行合成的。既然要实现算法必然离不开代码,对于数据分析以及数据可视化做的最好的也就是 Python 了,但是仅仅使用 Python 的数据分析以及数据可视化的模块或者包远远不够,天文学的东西太多了,如果一个一个自定义根本不切实际,于是有人想到要把这些天文学的东西封装起来,然后就出现了即将要讲解的 Python 模块——astropy。天文地理,与之对应的还有一个地理学的模块(我之前用过)——geopy。今天就来重点介绍这两个模块!
数据分析这个话题自从进入人们的视线以来,这个话题就成为人们茶余饭后的谈资,但是一千个人眼中就有一千个哈姆雷特,就意味着每个人对数据分析都有不一样的理解。
GrowingIO 2017年 第3本电子书 《产品经理数据分析手册》 正式上线啦 点击【阅读原文】立即下载 升级你的数据分析技能! 本文选自 GrowingIO 《 产品经理数据分析手册》 ,根据张溪梦演讲内容整理编辑;原文发于GrowingIO 博客 和公众号,授权大数据文摘发布 / 转载 。 本文作者:张溪梦, GrowingIO 创始人 & CEO,原 LinkedIn 商务分析高级总监。张溪梦先后服务过EPSON、eBay、LinkedIn 等硅谷明星企业,有着 14 年的数据分析、用户增长经
给CDA的小伙伴们打个招呼,介绍下您和您刚刚出版的新书,是什么原因激发了您写这本书的?
人力资源的数据分析是一个系统化的学习过程,除了需要掌握基础数据分析知识外,还需要掌握EXCEL的技能和人力资源的专业能力,为了帮助大家更好的学习数据分析,我帮大家梳理了一下学习的知识,需要学习哪些内容,如何循序渐进的来学习数据分析。
“小李,帮我分析一下我们的贷款业务增长趋势如何?哪个分支行的表现最好?新开设的线上理财产品的销售额是多少?马上给我一个分析报告”,某大型银行的副总经理王先生,对李经理提出了这样的数据分析需求。为了完成这个任务,李经理需要从银行的数据平台中获取和分析数据,以回答领导的问题。然而,这可能涉及到一些复杂的数据操作,如连接不同的数据源(例如贷款数据库和理财产品数据库)、过滤和聚合数据、创建数据可视化图表等。
很多人觉得数据分析是一个很高深的技能,要学会数据分析好像要会很多专业的软件,然后要和很多的数字打交道,要逻辑感非常强,其实数据分析没有大家想象的那么复杂,通过学习你也可以学会人力资源的数据分析。
导读:只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,本文为你一一道来数据分析岗的功能目的,以及组建方式,干货满满,诚意推荐! 数据分析行业现在大热,只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,还有更多的创业者更是不知道是否应该去组建一支数据分析团队,在什么时机组建?又以何种方式组建?本文为你一一道来。干货满满,诚意推荐! 这篇文章的作者是 Instacart数据分析副总裁 Jeremy Stanly
数据分析是指通过收集、整理、分析和解释数据来发现数据中隐藏的信息和关系的一种方法。数据分析的目的是为了提供洞察力和指导决策。
当你交给公司领导一份数据分析报告时,领导会问你的数据分析方法论是什么,如果你的方法论不正确或不合理,那么你的分析报告将没有价值可言,那么事实情况是不是这样呢?我们得从数据分析方法论的概念说起。
领取专属 10元无门槛券
手把手带您无忧上云