要进行一次完整的数据分析,首先要明确数据分析思路,如从那几个方面开展数据分析,各方面都包含什么内容或指标。是分析框架,给出分析工作的宏观框架,根据框架中包含的内容,再运用具体的分析方法进行分析。
真诚的向大家推荐,《腾讯课堂数据分析师认证课程》,该课程也是腾讯课堂指定认证课程。专为在校学生、0~3年职场新人量身定制,真正体系化、专业化帮大家提升数据分析能力,成为大厂抢手的数据分析人才。 10种商业模型 面对不同的场景,应用不同分析模型解决问题 5W2H分析模型、AARRR分析模型、RFM客户价值模型、A/B 测试模型、用户分成模型、SWOT分析模型、购物篮分析模型、波士顿矩阵分析、生命周期模型、企业战略模型 9大企业项目实战 全程直播教学 每个项目均由多位专业数据分析师精心挑选,从数据到课程知识
在进行数据分析时,那就会提及数据分析模型。在进行数据分析之前,首先要建立一个数据分析模型。根据模型的内容,将其细分为不同的数据指标以进行详细分析,最后得到所需的分析结果以及分析结论。常见的数据分析模型很多,亿信华辰小编列出了八个常见的模型供您参考。
反映用户在网页上的关注点在哪里,尤其对于官网首页来说,信息密度极高,用户究竟是如何点击,如何浏览的效果图
疫情,就像是我们心中的梦魇,让人心生恐惧而又挥之不去。 Omicron挟持了大多数人的正常生活,我们每个人都被迫生活在这“灰蒙蒙”的年代。在这个如此特殊的时期,疫情早日结束似乎已经成为了我们内心最大的期盼。 疫情期间,绝大多数行业的发展都不景气,有的人遭遇了裁员与失业,有的人选择了躺平与迷失。我选择了对自己来讲更有意义的事。 最近,我学习了贪心学院特别打造的《名企商业实战分析课程》,学习体验非常不错。借此机会,真诚为大家推荐这一门宝藏课程。 该课程是专为在校学生、0~3年职场新人量身定制的,主打名企项目实战
看看这些大厂的运营岗描述,你发现了什么? 岗位要求出奇的一致:需要数据分析能力。 随着数据成为第五大生产要素,数据分析能力的要求更是渗透到了各行各业。对于运营来说,不管是活动策划、用户增长、还是对产品走向的决策,都需要数据分析去对其进行支撑。 下图展示了现今对于运营人员的能力要求: 但事实上,绝大多数运营人员其实不会做数据分析,有的甚至一看到数据相关的内容就开始头疼。别说是利用数据模型辅助分析业务问题了,就连哪些是关键指标有些人都搞不清楚。 但严酷的现实就摆在面前,不会数据分析的运营,在职场中很难升
在我写了70篇分享文章后,我在简书、数英、梅花网、公众号等平台上拥有了数千名对数据和营销感兴趣的粉丝朋友,成为了数英网优秀作者和热门作者以及简书科技类优秀作者,我的微信朋友圈也因此在扩大。 最近有不少做运营和推广的朋友在问我说,运营和数据到底有什么关系呢?是不是只是根据数据做成excel表格图表就可以了呢? 嗯,如果只是简单地根据数据做成图表,我觉得只是在比肉眼更深一点在看数据,就是在看数据,很多大程度上是表层的,而且是会得到错误的表层信息,那远远不是数据分析。可惜的是,大部分公司都是这样在看数据。 其实,
前几天,我在「大数据分析和人工智能」公众号主理人邓凯的朋友圈,看到下面这张图片:
如果数据分析脱离业务,那么数据分析无任何意义,数据分析师或者数据分析部门于企业而言没有任何存在的价值。
大家经常说:无工具不管理、无数据难决策。所以企业的人力资源管理,我们首先要考虑在目前大数据背景下如何开展人力资源数据的整理与分析。 当前,移动互联网、社交应用、大数据等技术浪潮凶猛来袭,正在加速驱动着
在工作中,经常有人来问:“那谁谁,建个模型分析分析下!”而干多了就发现:不同人口中的模型根本不一样。因此今天,就从相对简单易懂的商业分析模型,开始科普。
随着移动互联网的快速发展,大数据技术变得越来越成熟,正在改变着人们的工作、生活与思维模式,进而对文化、技术等产生深远的影响。 本文选自《数据决策:企业数据的管理、分析与应用》一书,文末可了解本书详情。 ---- 在正式介绍企业数据分析流程及高级分析之前,首先介绍一些企业里常见的数据职位,以及每个职位的人在企业中承担的责任。 业务分析师(Business Analysis,BA):这类人需要了解行业,快速理解业务痛点,能够进行基础的统计数据分析类工作(某些高级一点的职位需要熟练的SQL技能)。他们通常掌握一些
Pandas是做数据分析最核心的一个工具。我们要先了解数据分析,才能更好的明白Pandas,因此,本文分为两个部分:
大家经常说:无工具不管理、无数据难决策。所以企业的人力资源管理,我们首先要考虑在目前大数据背景下如何开展人力资源数据的整理与分析。 当前,移动互联网、社交应用、大数据等技术浪潮凶猛来袭,正在加速驱动着企业人力资源管理的信息化进程。 那么,到底如何有效迎接这一浪潮,如何以价值为导向,整理、分析,并发掘出关键信息加以分析利用,从而提升人力资源管理效益,是每一位管理者面临的问题。 如何通过建立人力资源数据库,完成全面的数据化分析,实现用数据说话,真正推动企业人力资源管理转型升级,支撑企业战略发展。 人
漏斗分析是一套流程式数据分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。
导读:数据对于产品的发展起着决定性的指导作用,那么公司在运营的过程中具体需要一个什么样的数据来支撑服务呢?
诸葛君说:在日常的数据分析中,常用的有8大模型:用户模型(点我回顾)、事件模型、漏斗分析模型、热图分析模型、自定义留存分析模型、粘性分析模型、全行为路径分析模型、用户分群模型,其中,“事件模型”对于很多业务人员来说相对比较陌生,但他却是用户行为数据分析的第一步,也是分析的核心和基础。
从各大招聘网站中可以看到,今年招聘信息少了很多,但数据分析相关岗位有一定增加,而数据分析能力几乎已成为每个岗位的必备技能。是什么原因让企业如此重视“数据人才”?
根据三位作者的咨询和研究经验,以及与许多大数据和分析主题的公司合作,了解一个良好的数据科学家具有哪些主要特征。 大数据分析已经满天都是,IBM项目,每天产生2.5兆字节的数据。这意味着90%的数据在过
在残酷的商业竞争中,企业面临众多发展方向的诱惑,却不忘初心,始终坚持一条路已属不易。而对于本就不好做的第三方服务公司来说,专注行业分析16年更是显得尤为可贵。易观就是这样一家公司 来源:数据猿 记者:
| 导语 2019年底开始我开始接触数据分析,从初期的数据分析小白,到现在慢慢入门有些经验,想把我这里学到的数据分析的方法以最简单的方式解释给和当时的我一样小白的同学们,以下内容将分为【数据分析的意义】【基础指标体系搭建】【数据分析的方法】三大模块进行介绍 数据分析的意义 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。 数据分析是当前企业管理过程中不容忽视的重要支撑点,企业需要有完整、真实、有效的数据进行支撑,才能够对未来
通过部署和使用大数据分析工具,分析流程可以帮助公司提高运营效率,产生新的利润,获得竞争优势。企业可选择的数据分析应用程序有很多。比如描述性分析善于描述已发生的事情,揭示因果关系。描述性分析主要输出查询、报表和历史数据可视化。
介绍 在过去的几年中,人们对数据分析方法越来越重视。通过深入洞察数据情况,帮助很多企业改善了其经营状况。 通过分析数据,企业可以对其企业过往以及未来的表现有了更清晰的认识。通过对未来趋势的窥测,让企业可以对可能发生的意外(如果有的话)情况做好充足的准备。 通过分析数据,企业可以回答这三个主要问题,即:“过去发生了什么”,“现在正在发生什么”,“将来会发生什么”。毫无疑问,数据量的不断攀升,驱动了数据分析行业的快速发展。 数据分析不仅仅局限于汲取过去的经验,而是要能够预测未来的结果从而优化业务资源。因此,在
电力大数据平台拥有数据采集、数据存储、数据加工处理、数据分析挖掘、数据管控、平台管控、安装部署等功能,但是平台在组件融合、权限控制、对外接口封装等方面还存在不足, 不能够满足企业未来不同类型的大数据应用。
一、如何做一个好的数据产品经理? PD(指产品经理,下同)本身就是在做牛做马,关系圈异常复杂。数据PD也不例外。而且打交道的人更多。以下是我用PPT绘制的数据产品经理关系圈。如果你也做过 数据产品的产
👆点击“博文视点Broadview”,获取更多书讯 上期书单分享的一季度重磅级上榜新书都是技术开发类图书,对于非开发的小伙伴们来说可能不够友好,所以本期就来分享几本大众一点的数据办公类图书! 这几本书都是近期数据办公类的畅销新书,希望帮助大家用好数据分析解决实际业务问题,高效使用办公软件,从此告别加班,走上人生巅峰呀~~ ---- 01 ▊《数据分析之道:用数据思维指导业务实战》 李渝方 著 用数据思维指导业务实战 互联网大厂资深数据分析师精心撰写 原创文章全网累计阅读量超10
在大数据时代,数据分析的重要性毋庸置疑。但依然有很多人掌握了数据分析工具和技能,却做不好数据分析。 我们曾经都看到过这样的报道: “某市的人均住房面积是 120 平米”“计算机行业人均年收入超过 50 万元”。 看到这,不少人调侃自己“被平均、被幸福”了。 其实,这种事儿并不少见。我们最缺的不是数据,而是数的背后能看出什么结果。 就在前段时间,我的一个游戏分析师朋友告诉我,他的公司做了款游戏,很受欢迎,他们分别开发了安卓、iOS、Pad 等等版本。经过分析已有的付费数据,发现安卓用户的付费率要高于 iOS
数据分析可以帮助我们优化产品流程、改善用户体验、提升产品性能、提升运营影响效率、洞悉用户行为以及实现精细化运营。
导读:在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。本文是一位资深数据分析师对数据分析感兴趣的新人 Y一些建议,尽管不全面,但或许能够给新人一些借鉴。如有不妥地方,请各位数据大牛轻拍。 一、数据分析师有哪些要求? 1、理论要求及对数字的敏感性,包括统计知识、市场研究、模型原理等。 2、工具使用,包括挖掘工具、数据库、常用办公软件(excel、PPT、word、脑图)等。 3、业务理解能力和对商业的敏感性。对商业及产品要有深刻的理解,因为数据分析的出发点就是要解决商业的
以上是一位资深的数据分析师写的自嘲的段子,却是很多分析师的真实写照。在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。
来自数据的力量 您好,喜欢数据分析的初学者: 十年生死两茫茫 数据人,忙忙忙 良辰美景,平添我凄凉 一天早晚闲不住 调研急 报告狂 夜来思路忽闪现 寻笔记 怕遗忘 需求多变 改改又何妨 料得午夜加班时 听家人 鼾声响 以上是一位资深的数据分析师写的自嘲的段子,却是很多分析师的真实写照。在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。 最近接到一个职业访谈的邀请,要给对数据分析感兴趣的新人Y(目前在知名电商从事系统开发和维护)一些建议,才突然发现自己在这个领域打滚了一段时间
大数据分析工具使用户能够分析各种各样的信息——包括结构化事务数据和社交媒体帖子、Web服务器日志文件及其他形式的非结构化和半结构化数据。一旦组织决定要购买一个大数据分析工具,下一步就是制定一个流程,评估可用的产品,然后从中找到一个最适合你需求和要求的产品。 下面我们将介绍在评估各种大数据分析工具符合企业需求的程度时可能用到的必备特性和特定属性。然后,你再编写一个预案请求(RFP),说明使用这些工具将如何解决组织的需求。 评估标准 建模技术的广度与深度。供应商已经应用了不同级别的建模,并且相应地开发了不同复杂
在解决某个数学问题时,我们可以套入对应的公式进行解决; 那在数据分析里,也可以使用对应的公式来分析问题,并且对未来构建数据分析模型也有帮助; 给大家分享一下五种常见的数据方法,我们一起来看一下。
估计大家听大数据听得太多,耳朵都快起茧了吧?谁要IT界不如娱乐界那么精彩热闹,几年才憋出一个流行词,自然大家只要提到数据,都说“大”;提到服务,都说“云”。 言归正传,你弄明白大数据分析要分析什么数据了吗?(弄明白的高手可以直接飘过;没弄明白的,看下面的内容能不能涨姿势) 我们先来简单聊几句有关大数据分析工具的背景。无需置疑,现在大数据平台和大数据分析工具日益普及,作用是可以帮助企业收集和分析数据,好处是可以寻找有价值的商业信息和洞察,以改进产品与服务。大数据分析工具用于分析数据,可以开发预测模型(pre
在大数据时代,混乱的、无结构的、多媒体的海量数据,通过各种渠道源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析可以成为了一个有效的工具。 美国约翰·怀尔德杜克(John Wilder Tukey)1977年在《探索性数据分析》(Exploratory Data Analysis)一书中第一次系统地论述了探索性数据分析。他的主要观点是:探索性数据分析(EDA)与验证性数据分析(Confirmatory Data Analysis )有所不同:前者注重于对数据进行概括性的描述,不受数据模型和科研假设的限
我是一个数据从业者,很早以前就想把自己在工作和学习中的心得做个总结,一方面是对自己过往经历的一个总结和回顾;
本文介绍了反病毒引擎的发展、反病毒引擎面临的挑战、反病毒引擎技术的未来发展方向以及未来可能遇到的机遇。作者认为,随着互联网、大数据和人工智能的发展,反病毒引擎技术需要不断创新和进步,才能跟上网络安全面临的威胁。同时,反病毒引擎技术也需要融合互联网、大数据和人工智能等技术,实现更高效、更精准、更智能的病毒检测和处理。在AVAR 2017会议上,作者还分享了对于反病毒引擎技术的深入思考和总结,并对未来网络安全的发展趋势进行了展望。
1.第一个是Excel。这看起来很简单,但实际上并非如此。Excel不仅可以执行简单的二维表,复杂的嵌套表,还可以创建折线图,柱形图,条形图,面积图,饼图,雷达图,组合图和散点图。
易观方舟V4.3发布,智能埋点治理、智能指标监控等亮点功能,让运营更安全、更简单、更高效
Excel是使用最为广泛、最为便捷的办公软件,而且它的数据分析和挖掘功能功能十分强大,能够快速完成所有的数据清洗的过程,能够快速建立分析模型,并且快速运行得出结果,是做数据分析必备的工具。
把你需要花大量时间和实践才能掌握的方法和知识,我加工后用通俗的语言分享给你,你就可以最短的时间掌握这些知识。
大家在工作中是不是经常要做各种分析,但又常常遇到无从下手,抓不住重点,搞不清关键数据的情况。俗话说“工欲善其事,必先利其器。”一个好用的数据分析模型,能给我们提供一种视角和思维框架,从而帮我们理清分析逻辑,提高分析准确性。
👆点击“博文视点Broadview”,获取更多书讯 如今,数据分析俨然已成为一种基础工作,无论是哪个行业,做哪个方向的研究,都离不开数据分析! 学好数据分析,不仅可以帮助企业更好地开展业务,也可以助你在工作中脱颖而出,让科研成果得到更好地呈现! 所以,本期书单就和大家分享10本今年出版的数据分析好书,希望可以帮助你有效地利用数据分析,让数据更好地展示给大家! ---- 01 ▊《更好的数据可视化指南》 [美] Jonathan Schwabish 著 易炜 译 1本全面而专业的数据可视化宝典 5
都了年底我们开始做各个模块的数据分析,在人力资源各个模块的分析中,薪酬属于比较专业并且还是有点难度的数据分析模块,我们看到的很多HR在年底对薪酬的分析,基本都是集中在静态的薪酬数据分析,一般会对年度的薪酬做数据性的描述,并且在薪酬数据分析的呈现上都是从公司整体的宏观数据来做分析,如果要聚焦到部门,岗位,层级,在这些数据的展示上就需要跟过的PPT页面来做呈现,在数据的交互和数据展示上逻辑性比较的弱。
在做人力资源数据分析的过程中,很多HR的小伙伴都在追求数据分析如何支持业务,数据分析的结果,数据分析的解决方案如何给业务进行赋能,提升业务的岗位技能,最终提升业务的绩效。
近日,帆软举办了第四届FineBI数据分析大赛,让来自各个领域的业务人员,用帆软的BI产品来进行自助式数据分析,产生了大量的优秀分析案例。
👆点击“博文视点Broadview”,获取更多书讯 数据分析是一门艺术。 做好数据分析不是一件容易的事情,既要了解业务,又要有数据意识和思维,还要懂得分析方法,熟练使用分析工具。 博文菌最近发现几本持续霸榜的新书和经典书,迫不及待地想要分享给大家,希望可以帮助大家掌握一套正确的数据分析体系,并熟练地应用到实际业务问题的解决中! ---- 01 ▊《数据分析之道:用数据思维指导业务实战》 李渝方 著 本书是数据分析方法论与统计学知识、编程语言及应用案例的完美结合 作者累计创作 “100+”
领取专属 10元无门槛券
手把手带您无忧上云