书不在多,而在于精。下面从数据分析招聘要求的必须技能:统计学,Excel,SQL,业务知识,Python这5个部分来详细聊聊每一步如何去学习和看哪些书
“你做的数据分析有什么用?”是一个面试时经常被问到的问题,也让很多同学犯难。要么不知道从何说起,要么回答完了被人怼回来。今天我们系统性解答一下。
很多同学有疑问:数据分析到底对企业有什么用?数据分析到底能解决什么问题?今天我们一次讲清楚。所谓不识庐山真面目,只缘身在此山中。如果只站在数据分析本位角度看,很容易陷入各种花里胡哨的名词讨论中。我们换种方法,设想一下自己是业务部门的人,看看数据分析到底有什么用。
数据分析这词汇时髦的不得了,然而就像这些年所炒的各种概念一样,当冷静下来,请很多人解释数据分析到底是什么时,恐怕要有一个不错的答案很难。 比较常见的答案是:数据分析就是分析数据。那么怎么分析,分析什么呢?显然这个答案没有回答实际的问题。然而,正是这种含糊其词的状况,笼罩在业内,尤其是互联网行业的数据分析领域。似乎数据分析的诉求不断的提升,但究竟分析什么,用什么分析,分析的结果如何应用,不要说想清楚,恐怕连想都没想过。 在我看来,数据分析不是一项工作,尤其不是从后台取个数据,做个图表的工作
有同学问:老师,我害怕别人问我,做过的最成功的数据分析项目是什么?我感觉我做的都好简单,咋办?
说起网络,作为seo的一员,我们想到的就是网站运营、网络推广等,那么网站运营、网络推广都需要数据分析作为支撑,所谓兵马未动,数据先行,因此数据分析是我们做网络推广必须要掌握的技能。接下来,就让我们一起
数据分析不只是数据的罗列,而是数据和分析的结合。 数据层面包括数据获取、整合、可视化等操作;分析层面则是结合业务目的和数据表现给出相应的数据结论。只要掌握数据工具就能获取、整合数据,而分析问题并给出有效结论和建议就有一定的难度。根据分析结果给出合理的意见和建议是数据思维培养过程中重要的环节之一。 本文会立足于如何根据数据表现提出合理建议,通过几个示例说明数据分析师在给出建议时常常出现的误区。 1 数据分析师提出合理建议需要经历的三个阶段 并不是每个数据分析师从刚入行开始就能够通过数据分析为业务方提出合理解决
数据分析不只是数据的罗列,而是数据和分析的结合。数据层面包括数据获取、整合、可视化等操作;分析侧面则是结合业务目的和数据表现给出相应的数据结论。只要掌握数据工具就能获取、整合数据,而分析问题并给出有效结论和建议就有一定的难度。根据分析结果给出合理的意见和建议是数据思维培养过程中重要的环节之一。本节会立足于如何根据数据表现提出合理建议,通过几个示例说明数据分析师在给出建议时常常出现的误区。 1 数据分析师提出合理建议需要经历的三个阶段 并不是每个数据分析师从刚入行开始就能够通过数据分析为业务方提出合理解决方案
搭建指标体系有什么用?数据分析什么要搭建指标体系?有什么用?可能大部分人都说不清楚。在我看来,搭建指标体系的价值主要有3点:
如果你打开招聘的职位要求,都会要求具有统计学的知识,这是因为统计学是数据分析、机器学习的基础知识,是必须要学习的。
简单来说网络爬虫就是自动索引互联网上信息的一段程序,看起来像是一个搜索引擎「实际上网络爬虫就是搜索引擎的重要组成部分」,对于我们不做搜索引擎的人来说又为什么来学习爬虫呢,对于我来说很简单,就是想要通过学习爬虫的过程来巩固 python 的知识,通过爬虫我们可以学到什么知识呢?我们可以学到网络编程、数据分析、数据存储。分别对应了爬虫的三个主要功能抓取、分析、存储。
我们常说数据分析师是企业的医生。如果你真的去多几趟医院,就会发现还真TM像。因为数据分析师和医生是一样的苦逼:内行面对外行的苦逼。
1 没有明确分析数据的 要分析一个数据,首先要明确自己的目的,为什么要收集和分析这样一份数据。只有明确了目的之后,才能够把握好接下来应该收集哪些数据,应该怎么收集数据,应该分析哪些数据等。 2 没有合理安排时间 数据分析也要合理安排时间,一般有几个步骤,收集数据、整理数据、分析数据、美化表格。在做这些之前,要预估每一个步骤需要花多少时间,哪一步比较重要,需要花更多的时间等。这些都要在开始收集数据前就计划好,然后在操作的过程中完成每一个步骤。 3 重收集、轻分析 例如,做任务的时间为3个星期,却用了两个多星期
要分析一个数据,首先要明确自己的目的,为什么要收集和分析这样一份数据。只有明确了目的之后,才能够把握好接下来应该收集哪些数据,应该怎么收集数据,应该分析哪些数据等。
现在有关数据分析的文章满天飞,很多小伙伴好奇:到底数据分析是做什么的?今天小熊妹给大家捋一捋,就拿几个大家常问的问题举例吧。
在网站运营、网络推广等方面都需要数据分析作为支撑,所谓兵马未动,数据先行,因此数据分析是我们做网络推广必须要掌握的技能。 1、没有明确分析数据的目的:要分析一个数据,首先要明确自己的目的,为什么要收集和分析这样一份数据。只有明确了目的之后,才能够把握好接下来应该收集哪些数据,应该怎么收集数据,应该分析哪些数据等。 2、没有合理安排时间:数据分析也要合理安排时间,一般有几个步骤,收集数据、整理数据、分析数据、美化表格。在做这些之前,要预估每一个步骤需要花多少时间,哪一步比较重要,需要花更多
(具体聊聊在做kaggle项目的时候遇到哪些问题,问题出现的时候我是如何思考的?最后又是如何解决的?)
在看完本文后,你将对数据分析有更好的理解,而且将了解到作为数据分析师,你需要做些什么,以及该如何进入这个领域。
前几天写了一篇数据分析思维的文章,反响不错。我决定再写一些数据分析思维方面的文章。
小尧:本科财务类专业毕业后就进入职场打拼,在京东完成了从财务到数据分析的惊险一跃,目前是一家外企的数据分析师。
一切技术的出现都是为了解决现实问题,而现实问题分为简单问题和复杂问题。简单问题,需要简单分析,我们使用数据分析。复杂问题,需要复杂分析,我们使用机器学习。
数据只是数据分析的素材,数据分析则是一个系统工作。就像我们想做一个大盘鸡招待客人,光从菜市场买一只冰鲜鸡回来是远远不够的,还得:
先把数据分析,机器学习,人工智能等这些概念搞清楚,就知道要学什么,以及从哪开始学起了。
👆点击“博文视点Broadview”,获取更多书讯 如今这年头,没点数据分析思维,真的很容易陷入职业发展瓶颈! 对于一名普通的职场人来说: 如果缺乏数据分析思维,就容易陷入“只看眼前、表象和局部” 的状态。 而如果具备数据分析思维,就不仅能够看到事物发展的起因,还能够看到事物变化的趋势,看清楚事物发展的全局。 掌握数据分析思维,可以发现事物背后的逻辑,化解现实中的难题。 而且数据分析思维具有规律性和相对稳定性,掌握这个技能,能够经得起时间的检验,不容易过时,让人受益终身。 既然数据思维这么重要,那
“这个数据分析,怎么就越干越糊涂了呢?转行以前,看着学习的书单很清晰,Excel,Sql,Python一点点学过来。可转行后反而迷茫了,越干越感觉自己在打杂”一位转行的同学向我抱怨道。实际上他不是唯一抱怨的一位,即使是一直在做数据分析的同学,也照样有一堆问题。诸如:
BI工具即商业智能分析工具,是指使用一套方法和技术来准备、呈现和帮助分析数据的工具。将企业中已有的数据转换为知识,从而帮助企业做出明智的商业决策。这里说到的数据包括订单、库存、交易账目、客户和供应商等数据,它们来自于企业业务系统,企业所在行业和竞争对手,以及来自于企业所在的其他外部环境。
临近年底,很多同学问:“如何做出优秀的数据分析项目?不然年终总结都不知道咋写”。今天系统回答一下。想做好数据分析类项目,主要靠的是:树立正确的观念。这里有5道测试题,一起来测一测自己有多大可能做出好项目。
在这个时代,推荐引擎成了很多公司获得用户流量的利器,那请问一下,在机器学习进步如此神速的背景下,你收到的网站或APP的推荐,是否效果更好了呢?
▲持续增长的大数据和数据科学Google Trend,图片出自于《Spark机器学习:核心技术与实践》一书
通过大数据,百度掌握你的隐私,微信知道你的社交圈子,淘宝了解你的购物习惯,移动电信联通三大运营商存有你的 通话记录和上网记录……
之前经常和临床试验数据打交道,无论是来自手动录入的数据还是取自数据库的数据,在完成数据获取这一步后,感觉有80%甚至90%的时间和精力会用在做数据清洗(data cleaning)这一环节,即“增”“删”“查”“改”,通过data cleaning要让我们的数据成为可以进入模型的状态,也是就是清洁的数据(tidy data/clean data),过不了这一关,后面的建模就无法实现。
翻译 校对|秦时明月 大数据…大数据…现如今,人们总是在各种地方以各种方式提到这个词。然而,万能的大数据对保险行业究竟有什么用呢?想象一下:你在无边无际的数据中挑拣,搜索并整理你所需要的信息。这些数据可能来自于保险理算员手写的笔记、保险欺诈清单、理赔管理系统以及NICB(National Insurance Crime Bureau,国家保险犯罪局)的庞大的数据库。你真的能够充分利用这些数据吗? 在堆积成山的保险理赔中,理算员不可能有时间和精力去对每一个理赔查阅上面提到的所有数据。这样,他便很有可能遗漏某些
过去一年内,我们看到了大数据的井喷式发展,数据处理分析成为热门,大数据行业呈现出信息激进之势。这导致数据科学家、数据应用程序员和商业分析师等大数据方面的人才成为当下职场最炙手可热的岗位。 但是,我们也能发现,有能力处理日益增长的大规模数据计算的专家和人才,还远远达不到市场需求的数量。 有人预测,随着商业数据不断增多,2017年将成为新数字信息时代的开始。但是如果没有足够多的专家对这些数据进行分析利用,那么这些资源将在很大程度上得不到充分的利用。 很不幸,事实情况是大数据的发展要远远快于我们学习利用数据的速度
很多数据分析招聘的要求里会写“构建指标体系”,所以建立指标体系是数据分析人员的一项基本技能。下面从4个问题出发,系统介绍指标体系:
前言:“数据(data)”已经成为21世纪商业的代名词。聚拢大量数据的浪潮正变得愈加猛烈。公司无论所属行业和规模大小,都竭力想要实现以数据为基础驱动公司内部和外部运转的自动化,将流程数字化,并且打造出企业自身的信息库,在这个过程,企业管理层必须面对的问题不在于收集了多少数据,本文通过形象的例子告诉你什么是恰当的数据,并且教你如何解读。 很多企业认为自己是数据驱动型企业,但其企业内部却并未形成一套完备的数据运营管理体系结构,往往参与数据分析的人员只是寥寥几人或者某一个部门,如果数据团队成员有太多的共同点(比如
大数据文摘作品 编译:李雷、吴双、蒋宝尚 “数据科学家”可能是本世纪最性感的工作。 但雇用一个数据科学家却不是如此。 对于立志在数据科学领域有一定作为的新手来说,“数据科学家”可不仅仅是一个光彩照人的代名词。 新手需要不断的学习,才能成长为一名具有创造力的数据科学家。 另外,作为小白的你可能急切想得到一份数据科学的职位。 但你在面试的时候,面试官让你“挂掉”的原因可能有数百种。 总的来说,可以分为四种。为了更好的理解这四项失误,文摘菌将此类比狙击手的训练。 让我们开始吧......那么,让数据科学家面试失败
导读:几天前,数据叔在界面新闻看到这样一个标题:《【深度】潘石屹张欣彻底告别房地产》。数据叔当时还纳闷,潘老板告别房地产之后要去做什么呢?如今终于有了答案:
很多人会对数据分析和挖掘的意义产生疑问,比如数据哪里来的,比如分析完了到底有什么用,能不能带来利润的增加呢? 那就餐饮行业如何做数据分析和挖掘为例做一个简单的说明。 企业经营最大的目的就是盈利,而餐饮企业盈利的核心就是菜品和顾客,也就是餐厅提供的产品和服务对象。企业经营者每天都在思考的是推出什么样的菜系和种类能够吸引更多的顾客,究竟顾客各自的喜好是什么,在不同的时间段是不是有不同的菜品畅销,当把几种不同的菜品组合在一起推出时是不是能够得到更好的效果,未来一段时间菜品原材料应该采购多少,哪种方式的促销能够带来
领取专属 10元无门槛券
手把手带您无忧上云