最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 子弹图,它的样子有点像子弹,能够表达比较丰富的信息,例如表现好、中、差的取值范围,并突出显示实际值与目标值的差异情况...image.png 林老师GitHub子弹图代码如下: # 导入所需的库 import numpy as np import matplotlib as mpl import matplotlib.pyplot...family':'SimHei', 'color':'#00589F', 'size':15} # 标示制图的作者信息 ax2.text(1, 0.2, ' 制图:林骥\n' + r'$@$' + '数据化分析
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 首先介绍哑铃图: 哑铃图,是指用一条横线连接两个点、看起来有点像哑铃的图,主要是用来强调从一个点到另一个点的变化...image.png 数据如下: 城市 2017 2018 郑州 109.05 103.47 洛阳 108.39 95.86 安阳 119.99 110.99 开封 102.13 103.24 焦作 110.68...< 0].iloc[:, 1], ymax=df[df['变化']< 0].iloc[:, 2], color=c['浅蓝色'], zorder=1, lw=5,label='下降') # 绘制哑铃图两头的圆点
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 斜率图,可以快速展现两组数据之间各维度的变化,特别适合用于对比两个时间点的数据。...斜率图的优势,是能快速看到每个类别前后发生的变化,并能根据线条的陡峭程度,直观地感受到变化的幅度。...df.values fig, axes=plt.subplots(2,3,figsize=(4, 6)) fig.set_facecolor('w') axes=axes.flatten() # 画斜率图
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 堆叠条形图,用于展示不同类别之间占比数据,常常能起到很好的对比效果。...image.png 数据如下: date level1 level2 level3 201701 0 8 23 201702 0 6 22 201703 0 15 16 201704 0 15 15 201705...0, np.sum(data, axis=1).max()) # 定义颜色 category_colors = [ c['蓝色'], c['浅蓝色'], c['浅橙色']] # 画堆叠水平条形图
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 引用林骥老师关于雷达图的使用场景: 雷达图的背景一圈一圈地像雷达,用多边形来展现数据的大小...endpoint=False) # 增加第一个 angle 到所有 angle 里,以实现闭合 angles = np.concatenate((angle, [angle[0]])) # 倒转顺序,以让雷达图顺时针显示...set_thetagrids(angles*180/np.pi, labels=label) ax2.set_thetagrids(angles*180/np.pi, labels=label) # 画雷达图,
不过,获取数据不是智能威胁分析技术本身的关注重点,如何组织并使用数据才是核心问题。 网络环境本身具有典型的图结构,网络安全问题也因此很自然的与图数据结构、图算法结合起来。...国外使用多源安全数据构建统一分析图结构的项目还有Cauldron[3]。...网络安全数据结构中蕴含的图基因,不仅仅是数据可视化的基础,更是用以对抗网络空间威胁的安全智能构建的基础。那么,智能威胁分析能力的构建需要那些数据图的支撑呢? 三、构建智能威胁分析能力的关键数据图 ?...: 环境数据图:如资产、资产脆弱性、文件信息、用户信息、IT系统架构信息等 行为数据图:如网络侧检测告警、终端侧检测告警、文件分析日志、应用日志、蜜罐日志、沙箱日志等 情报数据图:各类外部威胁情报 知识数据图...知识图赋能下的威胁事件分析,能够拓展行为、环境、情报图关联实体的概念和数据上下文,是真正可解释、可推理、可行动、可复用的自动化、智能化分析。
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 水平方向的条形图非常适合阅读,因为文字的方向通常也是水平的,这符合我们的阅读习惯,有利于提高信息传递的效率...)), ' ' + category_names, ha='right', color=c['深灰色'], size=18) # 设置标签的字体大小 fontsize = 12 # 设置第一个条形图的数据标签...rect.get_height()/2, ' %.2f' % w, ha='left', va='center', color=c['深灰色'], fontsize=fontsize) # 设置第二个条形图的数据标签
最近阅读学习了林骥老师的《数据化分析 Python 实战》,书中讲好的技能应该刻意的练习,而不是简单的重复。...学习林骥老师的数据可视化的每种图表时,原来代码略微修改,使其适用于自己工作业务中的数据可视化。...林骥老师将数据可视化分析源代码分享在他的GitHub空间https://github.com/linjiwx/mp 柱形图是一种很常见的图形,用来进行对比分析,是一种比较好的选择。...,让观察者关注柱子的高度,而不是宽度和面积; 3、如果柱形图中某些具体的数值很重要,那么直接在柱子的附近显示数据标签,把 Y 轴隐藏掉,让观察者聚焦于关键的信息本身,而不是视线来回移动; 4、如果希望用柱形图来反映数据的整体趋势...,那么可以考虑保留 Y 轴,但是应该将 Y 轴的颜色变成灰色,以削弱其重要性; 5、谨慎使用包含多组数据的条形图,因为这可能会让观察者难以得出结论,考虑你想对比什么,并以此构造分类的层级,尽可能让柱形图变得简单易懂
from pylab import * # 创建一个 8 * 6 点的图,设置分辨率为 80 figure(figsize=(8,6), dpi=80) # 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第...from pylab import * # 创建一个 8 * 6 点的图,设置分辨率为 80 figure(figsize=(8,6), dpi=80) # 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第...在图像里面有所谓「子图」。子图的位置是由坐标网格确定的,而「坐标轴」却不受此限制,可以放在图像的任意位置。...from pylab import * # 创建一个 8 * 6 点的图,设置分辨率为 80 figure(figsize=(8,6), dpi=80) # 创建一个新的 2 * 1 的子图,接下来的图样绘制在其中的第...散点图,柱状图,3D图等 from pylab import * n = 1000 X = np.random.normal(0,1,n) Y = np.random.normal(0,1,n) #散点图
通过图查询语言进行图可视化有助于分析大量数据并识别欺诈活动的模式。...典型的图数据库如 Nebula Graph,我们本次的分析挖掘用到的数据集是 insurance claims 保险索赔数据,大家可以通过 ShowMeAI 的百度网盘地址下载。...使用图分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub 欺诈典型案例查找欺诈性索赔...使用图分析+AI进行保险欺诈检测 『insurance claims 保险索赔数据集』⭐ ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub具体的信息包括:...可以很清晰地看到:具有图特征的模型表现出色节点级别特征效果非常好聚类特征对结果也有补充作用 总结对于关联型业务场景,我们可以查询、可视化和分析图数据,构建有效的信息支撑更强大的商业欺诈方案,特别是对于试图通过复杂网络结构隐藏的欺诈活动
下面看一下利用基因型SNP数据进行PCA计算,以及可视化的分析。 很多软件可以分析PCA,这里介绍一下使用plink软件和R语言,进行PCA分析,并且使用ggplot2绘制2D和3D的PCA图。...绘制后的图如下: 2-D PCA图: 图片解释,将每个品种用不同的颜色表示,同时绘制置信区间圆圈,X坐标是PC1,解释24.9%的变异,Y坐标是PC2,解释10.61%的变异。...可以看到,三个品种在PCA图里面分的比较开,C品种的有两个A和B的点,应该是异常数据。 基因型数据: 共有3个品种A,B,C,共有412个个体。...然后使用R语言,计算PCA,并绘制PCA图。...如果进行GWAS分析,PCA加进去就很有必要!
讲数据分析体系的文章很多,经常是开篇一句:互联网分析体系……,下边几百个指标blabla汹涌而出。搞得很多同学很晕菜:这么多指标,实际中到底怎么看?今天系统讲解一下。话不多说,直接上场景。...这样能减少数据干扰,更容易得出结论(如下图)。 ? ▌ 相关系数低:比如播放次数和人均时长,不见得高度相关。很有可能有的视频太过标题党,标题太刺激,配图很色诱,把玩家骗进来结果发现货不对板。...有了评价,就能做出进一步分析。 5 从多指标到原因解读 评价了好/坏,就能进一步分析:为什么好、为什么坏。到这一步,就会发现,现有数据指标的问题:虽然看似一堆指标,可都是结果性指标。...这时优先考虑的是:补充数据,看看添加哪些数据能解释清楚问题。...6 小结 搭建数据分析体系可以很简单(如下图) ?
本专栏将使用tableau来进行数据分析,Tableau数据分析-Chapter13雷达图和凹凸图,记录所得所学,作者:北山啦 文章目录 本节要求 1 雷达图 1.1 数据表处理 1.2 创建计算字段...1.3 绘制雷达图 1.4 调整雷达图 2 凹凸图 2. 1 超市各年份利润的凹凸图 本节要求 1 雷达图 雷达图主要是用来进行多个维度的比较和分析 1.1 数据表处理 数据展示 可以看出有能力...推荐阅读: Tableau数据分析-Chapter01条形图、堆积图、直方图 Tableau数据分析-Chapter02数据预处理、折线图、饼图 Tableau数据分析-Chapter03基本表、...树状图、气泡图、词云 Tableau数据分析-Chapter04标靶图、甘特图、瀑布图 Tableau数据分析-Chapter05数据集合并、符号地图 Tableau数据分析-Chapter06填充地图...粒度、聚合与比率 Tableau数据分析-Chapter10 人口金字塔、漏斗图、箱线图 Tableau数据分析-Chapter12 网络图与弧线图 Tableau中国五城市六年PM2.5数据挖掘
Tableau-Chapter04标靶图、甘特图、瀑布图 本专栏将使用tableau来进行数据分析,Chapter04标靶图、甘特图、瀑布图,作者:北山啦 文章目录 Tableau-Chapter04...标靶图、甘特图、瀑布图 本节要求 标靶图 标靶图的概念和用途 二月份电量销售额完成情况 参考线 参考区域 甘特图 甘特图的概念和用途 交货延期情况的甘特图 不同的日期类型选择 瀑布图 瀑布图的概念和用途...超市不同子类产品的盈亏瀑布图 在这里插入图片描述 推荐阅读 本专栏将使用tableau来进行数据分析,Chapter04标靶图、甘特图、瀑布图,作者:北山啦 本节要求 本文链接:https...,参考区间,可以帮助分析人员更加直观的了解两个度量之间的关系。...长方形高度->标签、长方形高度->颜色 4.分析<合计< 显示行总结 显示效果 ---- 到这里就结束了,如果对你有帮助,欢迎点赞关注,你的点赞对我很重要
文:小蚊子 图:菜小白 干数据这行的小伙伴们是不是经常听到数据分析与数据挖掘这两个词?有没有觉得一头雾水?那么他们之间有什么区别与联系呢?今天就为你一一道来。...数据分析可以分为广义的数据分析和狭义的数据分析,广义的数据分析就包括狭义的数据分析和数据挖掘,我们常说的数据分析就是指狭义的数据分析。...我们可以从定义、目的、方法、结果这四个角度来了解对比数据分析(狭义)与数据挖掘之间的区别与联系。...综合起来,数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策。...所以数据分析(狭义)与数据挖掘构成广义的数据分析。 学习路线(非编程):A+B 学习路线(Python方向):A+C 学习路线(R方向):A+D
很多软件可以分析PCA,这里介绍一下使用plink软件和R语言,进行PCA分析,并且使用ggplot2绘制2D和3D的PCA图。 绘制后的图如下: 2-D PCA图: ?...可以看到,三个品种在PCA图里面分的比较开,C品种的有两个A和B的点,应该是异常数据。 3-D PCA图: ?...可以看到,三个品种在PCA图里面分的比较开,C品种的有两个A和B的点,应该是异常数据。 基因型数据: 共有3个品种A,B,C,共有412个个体。...然后使用R语言,计算PCA,并绘制PCA图。...lty.hide=2,lty.grid = 2) legend("topright",c("A","B","C"),fill=c('red','green',"blue")) 聚类分析思路
饼图 饼图是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系的。在matplotlib中,可以通过plt.pie来实现,其中的参数如下: x:饼图的比例序列。...explode:设置某几个分块是否要分离饼图。 autopct:设置比例文字的展示方式。比如保留几个小数等。 shadow:是否显示阴影。 textprops:文本的属性(颜色,大小等)。...假如现在我们有一组数据,用来记录各个操作系统的市场份额的。...fontproperties=font) text.set_fontsize(10) for text in autotexts: text.set_color("white") 效果图如下
使用图数据分析产业链时序数据 数据模型的设计 函数与过程功能介绍 完整实现 - 构建公司与产品时序图数据 查询案例-分析'消费品商贸'产业2020Q2季度总营收 其他资料 数据模型的设计 行业、产品、...如下主要是公司与产品营收的时序图数据建模实现方案。...olab.reset.map({map},{keys}) AS value 生成JSON-STRING RETURN olab.convert.json({object}) 完整实现 - 构建公司与产品时序图数据...在下面的实现中营收相关的时序数据使用JSON格式数据建模存储在关系的属性中 下述实现中集成了GraphQL-API、olab-apoc组件、访问数据库等操作,构建的图数据最终是将时序数据存储在了一个JSON...YIELD node WITH node RETURN node 行业与产品关联结构示意图 '消费品商贸’行业相关的产品【相关指从属关系的划分,这里拿出了下属三层以内的产业相关产品】2020Q2营收分析
、查询块Bolck •5.2、查询交易Transaction •5.3、查询地址Address •5.4、查寻路径•六、总结 使用图数据分析比特币区块链 整个过程就是从一种格式...[4] 一旦将区块链导入到图数据库中,就可以在图形数据库上执行SQL数据库无法执行的分析。...如果已经使用上面的Cypher查询插入了块和交易数据,那么就可以从图数据库中做一些查询分析了。...我认为,如果你想对区块链进行分析,这是值得的。图数据库是比特币区块链数据的最自然地表达,而使用SQL数据库来进行比特币交易数据分析,是非常困难甚至无法实现的。...References [1] TOC: 使用图数据分析比特币区块链 [2] 图形数据库: https://neo4j.com/blog/why-graph-databases-are-the-future
前面给大家介绍了MAF文件格式 ☞ MAF格式(mutation annotation format) 以及如何从TCGA数据库下载MAF格式的突变数据。...☞ 如何从TCGA数据库下载体细胞突变数据(somatic mutation) 今天我们来讲讲,怎么用R的maftools包来分析MAF格式的突变数据,并用瀑布图来展示结果。...maftools这个包的主要分为两部分功能,分析和可视化。下图列出了,这个包中相应的函数的名字。 我们先用maftools包自带的数据,给大家讲解这个包的使用方法。...突变类型统计图,碱基改变统计图,每个样本包含突变数统计图,样本中各种突变分类的箱型图,突变最多的10个基因所包含的突变类型,以及样本占比情况。...具体可以查看左下角的图注。右边的柱形图表示包含该基因突变样本的占比,以及突变类型的组成。 到这里我们瀑布图的绘制就完成了,是不是很简单。后面我们会找一篇SCI文章中的瀑布图来复现。
领取专属 10元无门槛券
手把手带您无忧上云