数据分析逻辑是整个人力资源数据分析过程中最核心的一个环节。我们在学习数据分析的过程中,一些软性的技能我们可以通过线上学习或者跟随老师的操作,反复的操作就可以学会,比如EXCEL的技能,这些都是数据技能类的知识。但是思维的养成和改变确实最难的,数据分析的思维需要你在真实的工作场景中,通过真实的案例的学习,积累数据分析的经验,养成数据分析的思维。所以数据分析的思维是不断学习积累的过程。
今天在我们人力资源数据分析群有个小伙伴提了这样一个话题,所以今天的来分享下什么是人力资源的数据分析思维,如何针对人力资源数据仪表盘来做数据分析报告,如何根据各个指标来做数据的诊断和解决方案。
如今,数据分析师是一个很热门的职业,薪资水平较其他职位普遍偏高。很多人也因为高薪和发展,纷纷转向数据分析师。本文我们将从企业内部数据分析架构和数据分析学习两方面来了解数据分析师是如何成长的? 一、企业内部数据分析架构 1.商业数据分析中心的组织架构形式 目前国内商业数据分析中心的架构形式大致分四种,技术型,虚拟型、战略性和分散型。 2.商业数据分析中心岗位角色 业务统计分析人员:理解企业数据,发现业务问题,开发预测模型,帮助企业更好地进行信息决策; 数据挖掘人员:知识发掘积累,需要熟悉各种数据挖掘算
现在很多企业都在做数据化转型,相对应的是企业内部的各个部门也开始做数据化的转型准备。这几年很多的公司,很多的机构,很多的HR 都相继提出人力资源要做数据化转型,数据要驱动业务的发展,支持公司的战略。但是我们听到了太多的 WHY,战略层面的数据化转型,数据体系的搭建,人力资源整体的数据转型,人力资源支持业务的发展,HR的思维要如何的去转型思考。但是很少有人告诉你,作为一个HR 你在企业里,你应该怎么做,如何去在你自己的人力资源模块里进行数据化的转型,建立数据体系,人力资源结合业务去去确定业务,发现问题,解决问题。
“互联网每2天产生的数据量,与2003年之前产生的数据总量一样多;短短三天,网民便会发送超过10亿条的推特消息;每天有500万条交易事件被记录。” “IBM首次赞助全国大学生数学建模竞赛,并设立专门奖项,激励大学生对数据分析和建模的兴趣” “麦肯锡发布大数据报告中预测,到2018年美国的高级数据分析人才的缺口将达到人才实际供给量的50%-60%。 “美国劳工统计局就预测,在未来8年,对数据分析专业人才的需求将增长24%。”
在数字化时代,数据分析已经成为企业和组织获取洞见、优化决策和提高竞争力的关键工具。随着大数据、AI技术的发展和普及,数据分析的方法和工具也在不断进化。
如果你正好是一名BI数据分析师或者在准备当BI数据分析师的路上,当你看到这个标题时可能就会开始各种不满,淡定!先稍安勿躁,咱先聊聊为什么我会这么说,如果你有其他异议,欢迎在评论区提出!
POWER Bi 的软件操作相对来说只要你掌握了EXCEL的数据他透视和一些基础函数就会很容易上手POWER BI,所以现在有很多的PB的课程,专门来讲解PB的一些基础的操作的课程。
许多人已经看到了数据分析行业的普及和良好待遇,但是他们不知道数据分析师的具体薪水。对于这个问题,我们需要分析三个方面,第一是数据分析师的薪水是如何分配的。其次是不同城市的工资水平如何;第三方面是数据分析师的薪水如何随着教育和经验的变化而变化。带着这三个问题,亿信华辰小编将与您一同讨论。
近年来,数字化转型的重要性已经被越来越多的公司所认识。在十四五规划中数据已经成为和土地、劳动力、资本、技术所并列的六大要素。如何充分挖掘数据资产价值,运用各类大数据分析工具来驱动业务发展,已成为企业管理者所关注的最重要的问题之一。国际著名咨询公司麦肯锡认为,构建大数据及高级分析能力是撬动企业业务新增长最重要的杠杆之一。加大数据分析能力的建设,从企业业务的各环节入手,有助于企业整体运行效率提升。
数据分析在保险行业的运用 由于客户的价值我们可能直接无法得到,这可能需要通过客户的属性信息或行为信息来判断。所以通过客户数据来判断客户价值,进行客户价值管理是未来的趋势,而数据分析就是这一方法的重要技术手段。现在数据分析可以说在商业中的应用越来越广泛,尤其是在互联网、通讯、金融、零售业中的应用,自上世纪数据分析技术在美国应用以来,现在已推广到全世界更多的行业之中。上世纪90年代末数据分析这一概念随着沃尔玛啤酒与尿布的典型案例来到中国来。那么数据分析技术在国内应用如何呢?在保险行业的应用又会如何呢? 一、数据
导读:对Linkedin商业数据分析部门而言,大数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。 在大数据时代,商业数据分析部门对一个公司的重要意义不言而喻。目前,很多公司的数据分析部门采用的都是“分析放在报表之上”的分析方法,即每天产出非常繁琐、复杂、海量、事无巨细的分析报告,但这些分析报告的可理解性和可执行性并不强。而Linkedin作为一个典型的数据驱动的公司,在进行数据分析时却反其道而行之,采用了“报表放在分析之上”的方法,化繁为简,以最快的速度在大数据金矿中发掘出最
人力资源的数据分析是一个系统化的学习过程,除了需要掌握基础数据分析知识外,还需要掌握EXCEL的技能和人力资源的专业能力,为了帮助大家更好的学习数据分析,我帮大家梳理了一下学习的知识,需要学习哪些内容,如何循序渐进的来学习数据分析。
在学习人力资源数据分析的过程中,除了要去学习基础的EXCEL的技能和人力资源的专业知识以外,我们还有一个技能就是 数据分析的方法这个也是我们需要去学的,数据分析的流程和方法其实有很多,今天我们来讲讲三维立体化分析的方法,这个在人力资源的数据分析里经常会用到。
导读:我们坚信,未来是大数据的时代,而数据分析师,就是走在时代前端的人。别把时间花费在低产出的数据整理和清洁上面,善于利用工具,朝向正确的方向努力,一定可以在成长道路上走得更快更远。 作者:陈明,GrowingIO 联合创始人&运营副总裁 直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。 家人:“数据分析?分析什么东西?” 我:“哪里有数据,哪里就有我们,什么都可以分析。” 家人:“是软件工程师吗?会编程吗?” 我:“...不是,不太会。” 家人:“那是管理层吗?” 我
点击标题下「大数据文摘」可快捷关注 导读:对Linkedin商业数据分析部门而言,大数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。 在大数据时代,商业数据分析部门对一个公司的重要意义不言而喻。目前,很多公司的数据分析部门采用的都是“分析放在报表之上”的分析方法,即每天产出非常繁琐、复杂、海量、事无巨细的分析报告,但这些分析报告的可理解性和可执行性并不强。而Linkedin作为一个典型的数据驱动的公司,在进行数据分析时却反其道而行之,采用了“报表放在分析之上”的方法,化繁为简,
敏捷,指反应(多指动作或言行)迅速快捷。敏捷和技术结合往往具有快速、简单、迭代的特点。如大家听说的敏捷开发就是指:以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。 数据库(DBA)与敏捷
从统计到数据分析,从数据挖掘到大数据,数据科学逐渐成为了一门新兴的学科,数据分析师也逐渐成为了一门抢手的职业。如何成为数据分析师?如何入行数据分析?教育是一个难题!在这个行业中,是否有高质量的证书?拿到证书后能找到多少薪资的工作?今天,我们来分析分析作为这个行业中的老牌,CDA数据分析师的等级标准。
近几年来,随着人工智能、大数据的兴起。数据分析师、数据挖掘工程师几乎成了高薪职位的代名词,不过很多人并不太清楚数据分析师的岗位职责和能力要求。今天我们就来聊一聊,企业数据分析师、数据挖掘工程师到底需要哪些能力储备?
除了家人朋友,很多时候,同公司内部的人也会比较困惑,数据分析师究竟是做什么的。收集数据、整理数据表、做各种报表、写ppt、做挖掘模型、打小报告
文 | 陈明 一个工作了5-6年的数据分析师,是如何改变比码农还惨的人生?谨以此文向每一位奋斗在一线的数据分析师致敬! 直到做数据分析师五、六年了,每每和家人朋友聊天,都还是会有人不懂我在做什么。 家人:“数据分析?分析什么东西?” 我:“哪里有数据,哪里就有我们,什么都可以分析。” 家人:“是软件工程师吗?会编程吗?” 我:“...不是,不太会。” 家人:“那是管理层吗?” 我:“还...还不到级别。” 家人:“那是商务人员?做市场或销售。” 我:“...也不是,不过我们辅助他们作决策。” 家人:“决策不
数据工作中有一类非常重要的角色,那就是数据分析师。为什么这个角色这么重要呢?因为要是没有这个角色,不管一个企业中的数据管理做得有多么好都没用,都无法带来实际的价值。这些数据就像是藏在海底的石油,而数据分析师就是开采海底石油的油井设备。要想让石油用于汽车轮船,需要通过这些设备先将海底的石油抽取出来,经过加工处理,提纯。
近日,帆软举办了第四届FineBI数据分析大赛,让来自各个领域的业务人员,用帆软的BI产品来进行自助式数据分析,产生了大量的优秀分析案例。
这个层面追求数据的准确性,一般以静态的数据为主,主要操作是数据的录入和记录,是HR每天的基础的数据工作,比如 员工花名册,公司人员结构,每天招聘人员数据的记录,这些都是属于操作层面,对于这个层面的要求就是要准确,当老板问你公司有多少人,每个月入职多少人,离职多少人等这些静态数据的时候,你都可以准确的回答。
第一阶段:工作时间被取数的工作安排得满满当当,根本没有时间做有价值的“分析”的工作;
现在,数据分析的力量正深刻影响着商业格局。大数据对公司的影响非常广泛,涉及市场营销、风险、运营等,高级管理层能够以不同的方式参与其中。
看看这些大厂的运营岗描述,你发现了什么? 岗位要求出奇的一致:需要数据分析能力。 随着数据成为第五大生产要素,数据分析能力的要求更是渗透到了各行各业。对于运营来说,不管是活动策划、用户增长、还是对产品走向的决策,都需要数据分析去对其进行支撑。 下图展示了现今对于运营人员的能力要求: 但事实上,绝大多数运营人员其实不会做数据分析,有的甚至一看到数据相关的内容就开始头疼。别说是利用数据模型辅助分析业务问题了,就连哪些是关键指标有些人都搞不清楚。 但严酷的现实就摆在面前,不会数据分析的运营,在职场中很难升
👆点击“博文视点Broadview”,获取更多书讯 数据分析是数学知识、统计知识和分析人员自身专业知识的融合及实际运用,其关键在于挖掘数据潜在的价值,解决实际问题。 分析人员可使用一系列科学研究方法挖掘数据本身的意义及数据之间的关系,进而为实际研究提供有力的数据支撑。 网络问卷调研的兴起让我们可以使用问卷作为背景案例进行阐述,不仅可以将各类分析方法融入问卷研究,还可以将分析思路进行梳理,以“傻瓜”式的文字进行讲解,从而解决实际问题。 在浩如烟海的数据中,不论是科学研究还是商业调查,很大一部分数据是通过调查
在当今大数据时代,数据分析已成为各个行业中至关重要的环节。Python作为一种功能强大、易于学习和使用的编程语言,拥有丰富的数据分析库和工具。
过去三十年,许多公司增设新的管理层以应对变幻莫测的商业环境。上世纪80年代中期,对于多数公司而言,首席财务官还是个陌生的职位。然而,伴随着价值管理以及企业与投资人关系日趋透明,越来越多的公司有了首席财务官。随着品牌建设与客户管理对公司的重要性与日俱增,首席市场官就变得越来越重要,此外,还有不少公司设置了首席战略官,帮助公司应对来自市场的挑战。
过去三十年,许多公司增设新的管理层以应对变幻莫测的商业环境。上世纪80年代中期,对于多数公司而言,首席财务官还是个陌生的职位。然而,伴随着价值管理以及企业与投资人关系日趋透明,越来越多的公司有了首席财务官。随着品牌建设与客户管理对公司的重要性与日俱增,首席市场官就变得越来越重要,此外,还有不少公司设置了首席战略官,帮助公司应对来自市场的挑战。 现在,数据分析的力量正深刻影响着商业格局。抓住数据发展带来的机遇,增加利润,提升生产力甚至打造全新的业务单元,成为了企业的新需求——这不仅需要信息基础设施领域的人
在人力资源的数据分析体系的构建中,我们最终的目的是要把人力资源各个模块的数据表进行数据的关联,然后通过关键指标来构建起一个体系化的数据模型,在进行人力资源的数据模型构建中,我们往往会忽略最重要的原始的数据标准表,今天我们就来聊聊在人力资源数据分析中的原始数据分析表。
本文旨在通过分析数据分析职位从业人员数量得出各地市数据分析行业发展水平及就业环境难度情况,无奈从业人员数据无法获取,故从各地市数据分析岗位招聘需求角度来分析,我想两者应该是正相关的。
要想弄清楚商业智能BI与数据分析的区别和联系,我们首先来看下什么是商业智能BI,什么是数据分析。
“大数据”时代到来了吗? 潮流是一股可笑又可敬的力量:今天,如果打开任何媒体,要是不提“大数据”,恐怕都不好意思出版。这股潮流,铺天盖地,连国家领导人都不例外。问题在于:为什么人人言必称大数据? 数据的价值,随着数据量的几何级数增长,已经不再能够通过传统的图表得以显现,这正是为什么商业智能还没来得及流行,便已被“数据分析”挤下舞台。因为,价值隐藏在数据中,需要数据分析方可释放这些价值。数据分析能力的高低,决定了价值发现过程的好坏与成败。可以说,没有数据分析,“大数据”只是一堆IT库存,成本
STATA软件是一款由美国Texas大学StataCorp开发的用于数据分析和统计建模的工具,被广泛应用于社会科学研究、医学研究、经济学研究等领域。在本文中,将从举例讲解的角度来介绍关于STATA软件的独特功能。
数据人才目前处于一个供小于需的状态,在主流招聘平台上可以看到各行各业都在不断地招募数据人才。为什么数据人才会这么稀缺呢?培养一个数据人才需要多久呢? 本文作者张明明,现任美菜网决策支持部负责人,数据运营高级总监。著有《数据运营之路:掘金数据化时代》。 希望看到本文的企业领导,更加珍惜企业的数据分析师,他们是整个社会花巨大成本培养出来的,希望可以给他们更多机会,以发挥更大的价值。看到本文的数据分析师,请转给你的领导。 ▊ 为什么数据人才会这么稀缺呢? 数据人才需要横跨三个专业:数学、商科、计算机,同时需要结
对于同比,环比的数据对比在人力资源的数据分析中,一般在人员流动,人员离职还有人效数据分析中出现的比较多。特别是在人员流动的数据分析中,因为人员流动的数据分析主要是通过对历史数据的分析,来预判明年人员入离职的时间,从而提前为招聘培训做好准备,所以在流动模块就需要来进行数据的对比。
大家经常说:无工具不管理、无数据难决策。所以企业的人力资源管理,我们首先要考虑在目前大数据背景下如何开展人力资源数据的整理与分析。 当前,移动互联网、社交应用、大数据等技术浪潮凶猛来袭,正在加速驱动着
数据分析人员的基本道德要求,首要之务是确保数据的真实性、完整性和准确性。在处理和分析数据时,必须坚守诚信原则,不篡改、不伪造、不隐瞒任何信息,以保证分析结果的可信度和有效性。
为什么你的数据分析成果总是难以落地?数据分析的价值总是远远低于预期?相信看完这篇文章,每个人都能找到一个属于自己的答案。以下为从事电力、军工、金融等行业担任数据分析师从业者的多年行业经验,希望能对大家
很多人觉得数据分析是一个很高深的技能,要学会数据分析好像要会很多专业的软件,然后要和很多的数字打交道,要逻辑感非常强,其实数据分析没有大家想象的那么复杂,通过学习你也可以学会人力资源的数据分析。
BI工具一直被誉为数据应用的“最后一公里”,其原因在于BI工具可以通过简洁的方式完成数据分析,将数据结果直观的展现给使用者,达到释放数据价值的目的。
随着数字化的发展,实证单位和企业需要处理分析的数据量呈指数级增长,传统的数据分析工具已不能满足一些企业的需求,越来越多的企业转而寻求BI工具的帮助。现在市面上有非常多的BI工具,质量也参差不齐,笔者特此盘点了现在市面上6款常见的BI工具,以供有需要的朋友参考。(排名不分先后)
许多刚刚接触数据分析的人或者转行想从事业务类数据分析的人来说如何学习才能学以致用,是一个尤为重要的问题,结合我的亲身经历讲一讲我的一些总结及看法: 对于想从事业务类的数据分析的同学,不管是刚接触数据分析的非数学及统计专业的应届毕业生还是转行的同学,这之前,首先你要把自己打造成一个专业的数据分析人员的形象,因为相比于纯业务人员,你的数据分析能力是他们所欠缺的,但是他们的业务经验也是你不足的地方;这就需要你有专业的统计学知识,熟悉 SQL 语句,懂得几款数据分析软件;学统计基础推荐《商务与经济统计(原书第
每到年底的企业人力资源年终总结报告,是令诸多hr朋友头大的事,公司年度会议上怎么给老板汇报这一年人力资源部门的工作呢,下一年的工作计划又该怎么列呢?
数据分析这个话题自从进入人们的视线以来,这个话题就成为人们茶余饭后的谈资,但是一千个人眼中就有一千个哈姆雷特,就意味着每个人对数据分析都有不一样的理解。
百度搜索大数据,就会发现这是一个日均搜索达到4000K的热词,在头条上也是如此,只增不降。
开展大数据审计是党中央、国务院对审计工作提出的新要求,是实现审计全覆盖的重要方法和路径。由于海量数据采集整理的有效性、被审计单位数据质量等因素影响,会产生一定的审计风险。因此,研究大数据环境下的审计风险及防范对策对于审计工作具有重要意义。
领取专属 10元无门槛券
手把手带您无忧上云