如图的树状逻辑相信大家已经见过许多回了。一般说明逻辑树的分叉时,都会提到“分解”和“汇总”的概念。
看了其他高赞回答,给没有数据分析思路的朋友的感觉仍然是“你说的很有道理,但是我为啥还是没有数据分析思路?”。
随着经济的快速增长,各个行业企业的各种客户数据信息、交易数据信息也成爆炸式增长,尤其是通信、电商等行业。大部分企业管理者开始意识到数据所能够带来的具体潜力与价值,数据分析技术也逐渐被人们使用。与此同时,数据分析人员供不应求,据麦肯锡咨询公司一份报告显示,到2018年,仅在美国,数据分析人才缺口约150万。 然而目前数据分析行业并没有统一规范标准,大部分大学里都没有开设专门的数据分析专业,从事数据分析工作人员大都为统计学、数学、信息计算、管理学、心理学等专业,对数据分析并没有一个清晰体系的认识,有的甚至连数据
互联网的商业模式千变万化,但其盈利模式目前大抵可以分为以下三种:一是向用户出售商品或服务,其中电商和o2o就属这种模式;二是靠广告来进行盈利,典型的例如google、百度以及其他平台类互联网公司;三是
从微博段子说起,微博上关于数据分析有两个段子,我经常当作案例讲,第一个段子,说某投资商对某企业所属行业有兴趣,要做背景调查,甲是技术流,一周分析各 种网上数据,四处寻找行业材料,天天熬夜,终于写出一份报告;乙是人脉流,和对方高管喝了次酒,请对方核心人员吃了顿饭,所有内幕数据全搞定,问谁的方法 是对的;第二个段子,某电商发现竞争对手淘宝店,周收入突然下降了30%,但是隔周后又自然恢复,中间毫无其他异常现象,于是老板让分析师分析,苦逼的分 析师辛苦数日,做各种数学模型,总算找到勉强的理由自圆其说,老板读毕,虽说
关于数据化管理的文章书籍已经非常多了,我这里只是近一步整理。数据分析也是为了公司的发展,粗暴一点讲,是为了公司的盈利和持续的盈利。就从这个角度,来逐一分解,互联网行业中,哪些数据需要分析,怎样分析,分析的价值是什么。我会整体分为四大部分:收入相关的数据分析、成本相关的数据分析、风险(为了持续发展)相关的数据分析、综合管理篇。
大家都知道,对于产品经理的岗位要求的能力还是比较多的,如果我们对这些能力,按照硬技能和软技能进行分类的话,就有且不止以下这些能力: 软技能:沟通能力、决策能力、逻辑分析能力、执行力、项目管理能力等; 硬技能(工具能力):文档能力、Visio、Axure、Mindmanger等;那么,今天,我们要再讨论讨论产品经理的另一种非常重要的能力---数据分析能力。 何为数据分析 现在的软件开发,都讲究小而美,单点突破,快速迭代。那么我们在快速迭代时,就要用到数据分析,通过用户使用数据来分析
数据猿导读 现在时代飞速的发展,人们获取信息的渠道非常多。在这个过程中,渠道整合所带来的竞争压力是所有的手机游戏发行行业共同面临的一个难题。渠道占据了大部分的用户资源,因此企业需要用大数据去服务用户。
👆点击“博文视点Broadview”,获取更多书讯 根据《2022年中国游戏产业报告》,2022年中国游戏市场实际销售收入2658.84亿元,同比下降10.33%。游戏用户规模6.64亿,同比下降0.33%。继2021年规模增长明显放缓之后,又出现过去八年来的首次下降,表明产业发展已进入存量市场时代。 在存量时代,游戏数据分析就显得格外重要。 数据分析可以帮助游戏业务人员了解用户和游戏当前的运营状态,提供决策的依据。做出正确决策的概率越高,意味着越有可能做出符合用户期待和市场需求的游戏,意味着游戏产品
数据分析离不开数据。百科对数据(data)的定义:是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的原始素材。数据可以是连续的值,比如声音、图像,称为模拟数据;也可以是离散的,如符号、文字,称为数字数据。
大家好,今天要给大家介绍的是商业策略。下面演示一个实际案例,帮您更好的了解这类岗位。
上一期讲到如何快速定位异常,这期就辅以实战案例加深理解。案例来源于我曾经的业务需求,为了避免不必要的麻烦,这里的数据是利用python生成的,并将业务背景简化处理,默认排除前置的数据传输异常和合理波动
某App 3月10日-3月12几天的整体充值收入提升非常明显(大于50%),但是,在整体充值中,占80%以上的功能充值的收入下降明显(大于50%)。这期间可能发生了什么?
主要从以下一些知识点做了准备: 常用的分析方法、Excel、SQL、 A/B测试、产品分析。
我们先从数据能力开始,先看看数据领域常见的3个岗位的招聘需求,每个岗位的一些重点,我都用橙色字体专门提炼出来了
在这个数据驱动运营的时代,数据不仅是数据工程师和分析师的事情,在工作中也要求运营从业者有一定的数据分析能力,更有人说“数据分析能力是未来运营的分水岭”。从我自身角度出发,真心觉得数据能更好推动运营策略和工作的开展。
我们生活在一个数据和分析可以为任何人所用的时代,你可以运用数据分析的威力找出什么可行,什么不可行,沿着最有效的路走向成功。
商业数据分析之所以越来越火,是因为小到业务执行、大到企业决策,数据都在持续发挥着价值。很多人凭借着数据分析的优势,在职场上愈加具有核心竞争力。
平均值是数据分析中常用的方法,是利用特征数据的平均指标来反映业务目前所处的位置和发展水平。平均值虽好,但是它真的可以反应业务的真实形态吗?答案当然是否定的。平均值很容易抹平个体之间的差异,因此很多时候个体暴露的问题很难从平均值中得到体现,所以说平均值并不是最优解。
就在一众竞品争相推出企业版之际,OpenAI官方的ChatGPT企业版也来了,附带8大功能。
作者:maolilai 腾讯IEG数据分析工程师 1 背景 在游戏业务运营中,经常会碰到关键指标出现异常,比如某个业务的活跃下降了,收入下滑了、某个运营活动点击用户下降、活动参与用户下降等等。针对这些问题都需要case by case去分析哪些因素可能影响到了这些关键指标的异动,需要要花大量的时间。本文主要介绍一种基于Adtributor实现的异动分析系统,用于日常游戏业务在经营分析中快速查找可能影响到关键指标的分析系统的实现。 2 挑战 在游戏业务运营中,都针对通用的各种指标进行监控,每天业务运营同
在数据分析训练营给大家讲解数据分析案例的时候,发现一些新手小白在做数据分析时,拿到数据不知道怎么分析、从什么维度分析,脑海里没有清晰的分析思路。
数据分析是产品运营极具战略意义的一环;从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人的必修课。 首先,我们来看比较常见的分析方法: 5W2H分析法:What(用户要什么?)Why(为什么要?
数据分析,是产品运营极具战略意义的一环;从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人的必修课。 首先,我们来看比较常见的分析方法: 5W2H分析法:What(用户要什么?)Why(为什么要
游戏行为数据的用户付费指标是评估玩家在游戏中消费行为的关键数据点。这些指标可以帮助游戏开发者和运营商了解玩家的付费习惯,从而优化游戏设计、提高收入和改善玩家体验。以下是一些常见的用户付费指标:
数据分析,是产品运营极具战略意义的一环;从宏观到微观分析,通过表层数据挖掘产品问题,是每个运营人的必修课。 首先,我们来看比较常见的分析方法: 5W2H分析法:What(用户要什么?)Why(为什么要?)Where(从哪儿得到?)When(我们什么时候做?)Who(对谁做?)Howmuch(给多少?)How(怎么做?) PS:(what)用户要极品装备!(why)因为他们要增强战力(where)装备从BOSS身上得到;(when)我们国庆节做这个活动!(who)针对所有玩家!(howmuch)BOSS爆率设
我毕业于上海立信会计学院毕业的税务专业,刚刚毕业的时候还是一枚小财务,后来工作中,身为财务,需要和业务各种斗(si)智(bi)斗(da)勇(zhan),于是在各种机(sheng)缘(zhi)巧(jia)合(xin)下,转行了数据分析。
NBA抓住自身优势数据资源,不断寻求外部合作,如与SAP、Stats、麻省理工斯隆体育分析大会、2K游戏公司以及ESPN、腾讯等合作,利用大数据充分挖掘潜能和价值。 对于NBA,几乎所有人都不会陌生,NBA代表着当今篮球职业联赛的最高水平,同时NBA球员的竞技水平也是世界上最高的。如今NBA的影响力早已遍布全世界,不管是不是篮球迷,每个人都能轻松说出几个耳熟能详的球星。 目前的NBA由30支球队组成,是当今世界篮球最高殿堂。随着NBA在世界范围内的影响力与日俱增,联盟的收入也在不断地增长。1995-1996
1月17日,腾讯云Game-Tech游戏开发者技术沙龙“游戏出海”专场在深圳举办,来自腾讯云、白鲸出海、腾讯游戏、乐逗游戏及AppsFlyer的5位专家,一起为现场数百位游戏从业者多角度解读了当前游戏出海的行业动态、技术难点以及未来趋势。
我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析方面我涉入不多,内容由于缺少实战经验,会比较基础和理论,希望同样对你有帮助。
Python 官方在今年 2 月做了一份报告,从官方的角度说明了 Python 的使用状况和受欢迎程度:
【每周一本书】之《游戏数据分析实战》:盛大游戏数据分析专家亲历16年的实战经验分享
Python官方在今年2月做了一份报告,从官方的角度说明了Python的使用状况和受欢迎程度:
作者:谢佳标 微软中国MVP,多届中国R语言大会演讲嘉宾,目前在创梦天地担任高级数据分析师一职, 作为创梦天地数据挖掘组的负责人,带领团队对游戏数据进行深度挖掘,主要利用R语言进行大数据的挖掘和可视化工作。 《R语言游戏数据分析与挖掘》新书上市已经有一个多月,各大网店均有销售。这是一部从大数据技术和游戏业务双重维度讲解如何利用结果数据指导商业决策的实战性著作,乐逗游戏高级数据分析师撰写,是他近10年数据挖掘与分析经验的总结。数据是无价的,只有当数据被挖掘分析并帮助到企业的时候才是有价值的。传统的数据分析
疫情笼罩的一季度,线上内容和娱乐需求出现大爆发,很多头部企业受益最为明显,比如腾讯、B站。
我特别不喜欢装逼的产品经理,看文章也一样不喜欢华而不实的。所以督促自己写文章时,把懂的、经历过的能细就写的尽量详细;不懂的就去学,然后把整理的笔记分享出来,数据分析方面我涉入不多,内容由于缺少实战经验,会比较基础和理论,希望同样对你有帮助。 1. 明确数据分析的目的 做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。 明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。 2
最近常听到的一个观点是,未来十年内 AI 可能会取代 50% 的工作岗位,但早 AI 一步取代你的,可能是邻桌懂数据分析的同事。很多人掌握基本的 Excel,但你真的懂数据么?
因为我实习的工作是游戏后端开发,所以难免会遇到游戏领域的一些专业知识,就比如游戏数据分析。因为之前从未接触过游戏这一块,所以很多东西得去学,在之前老大给我一个任务:统计一下XX款游戏近三个月的留存情况、Guide分布、付费情况,当时接到任务脑袋里是蒙的,留存??Guide分布??付费的指标有哪些??这些我都不知道,这些都属于游戏数据分析的内容,本文就记录一下我近期学习的游戏数据分析吧。
最近ChatGPT蛮火的,今天试着让ta写了一篇数据分析实战案例,大家来评价一下!
4月17日,有消息称亚马逊将于本周宣布退出中国,具体的时间待定。此后,亚马逊在中国仅保留两项业务,一是Kindle;二是跨境贸易,主营业务电商将全部退出中国。
人类有史以来,从来没有停止对宇宙的探索,从生命、陆地、海洋、宇宙、暗物质到黑洞,虽然我们依然对宇宙生命充满了无知和迷茫,但是在这个过程中却总结出了很多关于生命周期的理论。关于生命周期,简单点说,就是人会生老病死,花会花开花落,宇宙中的万事万物都在进行有始有终的关于生死的周期性演绎。引用老子在《道德经》中说法,即道生一,一生二,二生三,三生万物。万物变幻,九九归一。
大数据文摘“可视化”专栏已经成立,如果您是专业人员,愿意与大家分享,请后台留言,加入我们,一起把这个平台和专栏做得更好。回复“可视化”阅读系列文章。 大数据文摘翻译作品 翻译:高航,郭芳菲,于婷婷 校对:康欣 如需转载,后台留言申请授权 欢迎熟悉外语(含各种“小语种”)的朋友,加入大数据文摘翻译志愿者团队,分别回复“翻译”和“志愿者”可了解更详细信息。 我们看到过各种图表,其中最常见的就是曲线图。你可能觉得它没有什么难理解的,很容易看明白。甚至,你自己也做过各种漂亮的曲线图。但是,如果处理不得当(或被精
今天分享一下交流群里海潮兄弟的「数据分析岗」求职与工作经验,以下是海潮兄弟的自诉,全文共4825字,6图,阅读大概需要15分钟。
1、明确分析的目标 做数据分析,必须要有一个明确的目的,知道自己为什么要做数据分析,想要达到什么效果。比如:为了评估产品改版后的效果比之前有所提升;或通过数据分析,找到产品迭代的方向等。 明确了数据分析的目的,接下来需要确定应该收集的数据都有哪些。 ◆ ◆ ◆ 2、收集数据的方法 说到收集数据,首先要做好数据埋点。 所谓“埋点”,个人理解就是在正常的功能逻辑中添加统计代码,将自己需要的数据统计出来。 目前主流的数据埋点方式有两种: 第一种:自己研发。开发时加入统计代码,并搭建自己的数据查询系统。 第二种
作者:陈会华 腾讯CSIG数据产品经理 导语| 从优秀数据分析师的访谈中,找到进入数据分析领域的捷径。 寄语 数据分析师Data analytist(或者数据科学家Data scientist),是公司不可或缺的组成人员,一家缺失数据分析师的公司,至少说明这家公司缺少数据驱动的意识,在未来竞争中,一定处于被动。 一直以来,我致力于推进数据化运营,而数据化运营需要解决几个核心问题: 1. 如何培养员工基于数据决策的意识和能力? 2. 如何构建一个高效的数据驱动的公司组织(如数据中心、产品团队的分析组等)和文
数据分析写的运营分析报告,和运营写的数据分析报告,到底有啥区别?这不是个绕口令,而是困扰很多同学的真实问题。特别在很多推崇“数据思维”“科学管理”的公司里。大老板喜欢看报告,下边的人人奋笔疾书,好不壮观。
抱歉大家,由于我的时间安排失误,这几天的推广连续集中在一起了,的确有点频繁,请大家谅解。这次推广是介绍来自优达学城的一门数据类课程,优达的课程质量一向是非常高的,这次也不例外,如果大家对数据分析感兴趣,推荐大家看一下~
写在前文,首先声明博主对数据分析领域也在不断学习当中,文章中难免可能会出现一些错误,欢迎大家及时指正,博主在此之前也曾对不同量级、不同领域的数据进行过分析,但是在过程中总是感觉有许多困惑,即自己也会问自己?自己分析的是否全面,是否有价值,从哪些方面出发?对于这些问题博主做了思考。归根到底还是在理论上,在阅读了相关的专业书籍和材料的基础上总结出本文,希望能给大家带来收获,同时由于内容过多,计划分三次完成全部内容,同时如果大家感觉对自己有帮助的话,记得收藏,博主会不断完善本文的缺陷和不足,希望真正能给大家带来收获!
领取专属 10元无门槛券
手把手带您无忧上云