大家好,我是大鹏,目前是一名数据分析师,从非本专业成功转行,创立“数据团学社”“城市数据研习社”,运营数十万人社群,联合发起“城市数据团”。
本文旨在通过分析数据分析职位从业人员数量得出各地市数据分析行业发展水平及就业环境难度情况,无奈从业人员数据无法获取,故从各地市数据分析岗位招聘需求角度来分析,我想两者应该是正相关的。
相对与转换率对渠道的分析,可能很多HR没有做的很精细,只停留在比较宽泛的渠道数据分析里,今天我们来讲讲如何对招聘渠道做数据分析。
经常看见各种数据分析师培训的运营推荐,那么数据分析师的就业行情究竟如何?让我们用数据说话,一探究竟!
想学习数据分析,但不知道从哪里下手,那么直接看看公司招人的条件,总结一下,你就知道学习什么了。基于此,小编爬取了拉勾网上面关于数据分析的招聘信息,并存储到MySQL数据库,最后进行数据分析。
这也是为什么有经验的数据分析师的工资水涨船高,但是校招数据分析师招聘内卷化严重的原因。
数据分析和数据挖掘是数据从业者非常关注的两个岗位。这两个岗位到底有哪些区别?常听人说数据分析偏业务、偏前台,而数据挖掘偏技术,偏后台。所以要早点选定一个方向进行深耕才行?
每到年底的企业人力资源年终总结报告,是令诸多hr朋友头大的事,公司年度会议上怎么给老板汇报这一年人力资源部门的工作呢,下一年的工作计划又该怎么列呢?
人力资源各模块的关键指标数据汇总,供大家参考! 模块关键指标指标意义计算方式数据来源人员结构 公司各部门人数在年度的数据分析里,了解各个部门月度的不同的人数,来了解各个部门的人员编制情况/人员信息表公司各岗位人数主要了解关键岗位的人员数量,同时浏览各个岗位的人数,来判断岗位人数是否合理,时候是可以裁人数/公司各学历占比通过数据的占比,来分析公司现在人员学历的组成情况,根据数据对人员招聘的学历要求做调整,同时可以根据部门的学习信息,在进行沟通和相关事宜的时候可以适当的调整策略/公司各年龄段人数通过该数据可以了
在招聘的数据分析中,我们招聘的同学分析最多的就是招聘完成率和招聘各个阶段的转换率的数据,很少去分析招聘各渠道的有效性数据,主要是因为招聘的有效性数据分析对招聘数据的要求很高,需要每个岗位有每个渠道的各个阶段的转换数据和招聘成本分析的数据,需要每天进行数据的记录,这个对于HR在数据标准型上来说是个挑战。
作为一名数据分析师最不能错过的数据是什么?当然是和每一位数据分析师息息相关的,决定大家是吃土还是吃面包的招聘数据。
大家经常说:无工具不管理、无数据难决策。所以企业的人力资源管理,我们首先要考虑在目前大数据背景下如何开展人力资源数据的整理与分析。 当前,移动互联网、社交应用、大数据等技术浪潮凶猛来袭,正在加速驱动着
大家经常说:无工具不管理、无数据难决策。所以企业的人力资源管理,我们首先要考虑在目前大数据背景下如何开展人力资源数据的整理与分析。 当前,移动互联网、社交应用、大数据等技术浪潮凶猛来袭,正在加速驱动着企业人力资源管理的信息化进程。 那么,到底如何有效迎接这一浪潮,如何以价值为导向,整理、分析,并发掘出关键信息加以分析利用,从而提升人力资源管理效益,是每一位管理者面临的问题。 如何通过建立人力资源数据库,完成全面的数据化分析,实现用数据说话,真正推动企业人力资源管理转型升级,支撑企业战略发展。 人
最近在优化人力资源招聘渠道模块数据的时候,想到了这个问题,数据的简洁与复杂,很多时候我们在做数据分析的时候有时候鉴于数据缺少,所以在做前期的原始数据的时候都做的比较的简洁,前期的数据简洁虽然在做数据分析的时候相对比较简单,但是对数据分析的精准性和预测性确影响比较大,因为在做数据分析的时候,数据越多,基数采样越多你后期的数据分析就分析的越精准,我们来看这一个案例:
在如今竞争激烈的求职市场中,拥有准确、全面的招聘数据分析是帮助求职者做出明智决策的关键。幸运的是,Python爬虫技术为我们提供了一种高效、自动化的方式来获取和分析招聘网站的数据。本文将介绍如何使用Python爬虫抓取招聘网站数据,并通过数据分析为求职者提供有价值的信息。
2014年,“大数据” 成为国内年度热词,并首次出现在当年的《政府工作报告中》。同年,数据分析也同样成为朝阳行业,数据分析一度霸屏各招聘网站。
2020年5月6日,人力资源和社会保障部发布《新职业—大数据工程技术人员就业景气现状分析报告》,报告显示:预计2020年中国大数据行业人才需求规模将达210万,2025年前大数据人才需求仍将保持30%—40%的增速,需求总量在2000万人左右,数据分析人才是市场上迫切需要的高端型人才。
最近,“大数据”成了媒体解读两会的“利器”。活泼的数据图表一出现,枯燥的政府报告、政策解读都变得有趣和易懂了。 将大数据当作金矿的话,那数据分析师就是掘金人——作为这一新兴产业的弄潮人,他们在人才市场上也是独领风骚哦!普通数据专员月薪3000元以上,高级数据专员年薪可达40万元到50万元。 而最重要的是,通过数据参与企业管理和市场营销,数据分析师成长为企业高层也充满各种可能。 数据分析员究竟工作内容是什么?他们如何工作?进入这行要具备哪些职业素养?本期行当版为你一一解答。 高级数据分析师不好
这个层面追求数据的准确性,一般以静态的数据为主,主要操作是数据的录入和记录,是HR每天的基础的数据工作,比如 员工花名册,公司人员结构,每天招聘人员数据的记录,这些都是属于操作层面,对于这个层面的要求就是要准确,当老板问你公司有多少人,每个月入职多少人,离职多少人等这些静态数据的时候,你都可以准确的回答。
反映用户在网页上的关注点在哪里,尤其对于官网首页来说,信息密度极高,用户究竟是如何点击,如何浏览的效果图
我们以前在讲HR的各个能力赋能的时候都是从HR的角度出来做分析,特别是HRBP要支持业务部门,BP需要哪些技能,我们应该如何的去赋能这些BP,今天我们换个角度,从业务部门的角度出发,业务部门到底需要一个什么样的HRBP,能最终的来支持业务提升绩效。
这周刚结束一家公司的 3 轮面试,拿到了数据分析岗的 offer。虽然岗位没变,但是在有一年gap year 和跨行求职的前提下拿到的 offer 。
数据分析该如何与算法合作,是个老大难问题。一方面是业务方日益提高的,对模型的幻想。另一方面是大量企业里存在的,数据采集差,缺少足够数据人员,工作目标不清晰等等问题。到底该如何和分析与算法协同增效?今天系统分享一下。
我做了两份简历,用两个手机账号,两个简历名字,分别在各个招聘网站投了双份简历,一个是数据分析的简历、一个是web全栈开发的简历,我真正接触python快2年,不管是学习还是工作学到的东西,这两年大概掌握了(前端+django+爬虫+数据分析+机器学习+NLP+Linux)技术,技术水平自我评价一般,够日常一般使用,基于自己掌握的技术可以分成2方面,web和数据分析,所以为了尽快找到工作,就做了web全栈开发+数据分析(含爬虫)2份简历,同时投递
●招聘完成率(招聘效率)=在规定周期内完成的招聘岗位数量÷在规定周期内计划完成的招聘岗位数量
上周末晚上,我的学妹突然约我出来喝咖啡,我觉得这件事情不简单,果然一到她就递给我手机,开口就问:
【摘要】数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。< span>< span>< span>< span> 数据分析师是企业的贤内助,可帮企业识别市场机会、控制决策风险,保证企业利益的最大化。在此,数据分析工作越来越受到各界的青睐。被《HR管理世界》评为七大赚钱行业之一,也被视为我国21世纪的黄金职业。在这样的背景下,有些网友想进入到数据分析行业,但对如何规划自己的职业之路比较迷茫。这里我谈谈自己的一些浅显理解,与大家切磋。 这个话题可以
春节回家,看到朋友晒的年终奖,我羡慕不已。 他入职腾讯一年半,拿了3个月工资作为年终奖。据他所说,这还不算什么,网易《哈利波特·魔法觉醒》项目组,所有员工奖励888888元…… 虽然说并不是每个大厂员工都可拿到百万年终奖,但平均下来也有3-6个月的奖金(真香)。 相信很大一部分人想要趁着金三银四跳槽去大厂,那么数据分析、产品、运营人想进大厂,应该做哪些准备呢? 为此,我特意研究了各大招聘网站将近百份招聘需求,发现几乎所有的中、高阶产品、运营和市场岗位,都对数据分析能力非常重视。 由此可见,数据分析能力已经
不知不觉,十月份已经过去了,传说中的金九银十招聘季也应该随之结束了,不知道有换工作打算的朋友有没有找到理想的下家,反正我没有
我们在做招聘的数据分析的时候除了做招聘各阶段的数据转换率的分析,还要关注各岗位的招聘有效性,招聘成本以及各个渠道的招聘数据。特别是在年底的时候,我们要对招聘的成本做分析,那如何来做招聘成本和渠道的分析呢,今天我们就通过下面这个案例来做分析。
2022,注定是不平凡的一年,疫情当道、国际动荡、经济不景气。在此背景下,小火龙想和大家聊聊「数据分析岗位是否还有前途」。准备从事数据分析的同学是否要入行?已在行中的同学是否要转行?
本文试图通过招聘数据了解数据分析岗位的最新招聘情况,包括行业需求、经验要求、薪资水平等, 进而分析出相关的薪资以及招聘要求。(数据样例可参考原文)
本文试图通过招聘数据了解数据分析岗位的最新招聘情况,包括行业需求、经验要求、薪资水平等, 进而分析出相关的薪资以及招聘要求。
在《手把手带你抓取智联招聘的“数据分析师”岗位!》一期中我们分享了如何抓取智联招聘中“数据分析师”岗位的数据信息(数据截止到2018年11月4日),在本期我们将基于已有的数据对其作进一步的分析和探索。在探索过程中,我们将围绕如下几个主题进行问题的回答:
我们随机打开招聘网站,随机抽取13家公司招聘数据分析岗位的要求。数据分析岗位薪酬分布:8-50k,岗位要求描述:总计61行,用词 2899个。
今天近乎所有的互联网公司都希望组建(大)数据分析团队,但由于大数据技术应用是一个高速发展的全新领域,与建设常规的软件开发团队相比,企业在数据科学团队的招聘、建设和成长方面面临各种全新的挑战。 对于人力资源经理来说,大数据分析人才的招聘说明中有太多的生词,包括各种大数据新鲜名词、算法和技能,而且整个技术人才市场对大数据经验、最佳实践的定义和标准尚无定论。 近日Experteer的Rodrigo Rivera为VB撰文指出,企业组建大数据分析团队首先需要搞清楚以下三个问题:数据分析团队在企业组织架构中的智能定位
我们今天来讲讲招聘完成的平均数和招聘完成率的交互的数据分析图表,我们可以根据一定周期内的招聘完成平均数,来交互招聘完成率,根据不同的招聘完成平均数我们可以看到我们招聘完成率是多少,同时我们也可以呈现出每个部门是在平均数以下还是以上,如果要完成80%的招聘完成率,会有哪些部门是有可能在平均数以下的,我们先来看看做好的效果:
在年终做招聘数据分析的时候,我们都会去分析一年各个招聘渠道的数据,会从招聘的成本和招聘的效率等几个维度来做分析,那我们今天就来讲讲招聘渠道分析报告应该如何来做。
根据“谷歌趋势”,在2011年的时候,“大数据”还很少被用作搜索词,但是从2012年开始到现在,你几乎能听到各行各业的人都在谈论“大数据”。这是一个增长非常迅速的领域,而且催生出了很多的工作机会。麦肯锡公司的一份报告预计,到2018年仅美国在“具备深入分析能力”的大数据专业人才方面的缺口就在14万人到18万人之间。据New Vantage Partners公司对《财富》美国500强公司的调查显示,85%的500强企业要么已经推出了大数据项目,要么正打算推出。未来几年他们花在数据分析上的投资将平均上涨36
根据“谷歌趋势”,在2011年的时候,“大数据”还很少被用作搜索词,但是从2012年开始到现在,你几乎能听到各行各业的人都在谈论“大数据”。 这是一个增长非常迅速的领域,而且催生出了很多的工作机会。麦肯锡公司的一份报告预计,到2018年仅美国在“具备深入分析能力”的大数据专业人才方面的缺口就在14万人到18万人之间。据New Vantage Partners公司对《财富》美国500强公司的调查显示,85%的500强企业要么已经推出了大数据项目,要么正打算推出。未来几年他们花在数据分析上的投资将平均上涨36
数据分析这个话题自从进入人们的视线以来,这个话题就成为人们茶余饭后的谈资,但是一千个人眼中就有一千个哈姆雷特,就意味着每个人对数据分析都有不一样的理解。
本人目前从事零售行业的工作,工作中经常涉及到报表分析,比如进销存分析,货品结构分析、畅滞销分析、业绩分析。
这两年的大数据热潮带火了数据分析这个职业,很多人想转行干数据分析,但是又不知道现在这个行业的求职环境和前景如何,动了心却不敢贸然行动。
“大数据”时代,数据分析岗位需求逐步增多,薪资也从最初的月薪1W到月薪5W。 不过从招聘网站上可以看出,高薪行业对数据分析能力要求也越来越严格,尤其是字节、阿里等大厂。 15 年,会用个 Excel,会查数据库就能找到很好的工作; 17 年,你得会做BI可视化,能给老板做漂亮的动态报表,同时还得精通Python; 到了 2022 年的今天,除了 Excel 、 Python 、 BI 这些基础的工具,你还要懂统计、建模、数据分析、业务增长等…… 为此,我从网站上搜了不少学习资料和视频,但看完只能
在我们前几期做招聘数据分析的时候,我们讲到了招聘渠道的数据逆分析,在上一期我们通过各个部门维度来对招聘渠道进行数据分析,选择部门,出现这个部门招聘人数是由哪几个渠道提供的,
作者 Amy 本文为CDA数据分析师志愿者投稿作品,转载需授权 经常遇到有人留言咨询,表明自己想做数据分析,但是面临着很多“困境”,如: 大学本科数学专业的,想从事数据分析师,但没项目经验怎么办?应该怎么规划? 我一个朋友想做数据分析,她是学物理的,过去有一些工作经验,但是跟数据分析没什么关系,去面试数据分析有压力吗? 我是文科生,没有数据分析经验,也没有数理统计基础,想找一份数据分析的工作难吗? 归根溯源,很多人看好数据分析,想要入职数据分析岗位,但是为什么选择数据分析,你真的想清楚弄明白了吗?是单纯的因
领取专属 10元无门槛券
手把手带您无忧上云