首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据湖是什么意思?数据湖有哪些价值?

,庞大的数据保存就是非常麻烦的问题,数据除了可以保存在各种存储硬件上面之外,现在还引入了数据湖的概念,那么数据湖是什么意思?...数据湖有哪些价值? 数据湖是什么意思? 数据湖一开始是由各种大数据厂商提出来的,大家都知道现在数据量是非常庞大的,无论是个人数据还是企业数据都是很重要的,很多人想知道数据湖是什么意思?...数据湖是专门为不同种类数据存储引入的新概念,也就是大家常说的hub集群,对于数据量比较庞大的企业来说,可以进行各种不同种类的存储。 数据湖有哪些价值?...企业中的数据都是属于大数据,数据湖的价值之一就是将企业中不同种类的数据汇总在一起,为企业详细的进行数据分类,从而保证以后更加方便的查看,数据湖的价值之二就是数据分析,不需要预定义的模型就可以直接在数据湖里面进行数据分析...相信大家看了上面的文章内容已经知道数据湖是什么意思了,数据湖的应用还是比较广泛的,在很多中小型公司中都会经常使用到,如果大家对于数据湖这方面有兴趣的话,可以前往我们网站浏览更加相关文章内容哦。

83230

COS 数据湖最佳实践:基于 Serverless 架构的入湖方案

这篇文章就数据湖的入湖管道为大家详细解答关于 COS 数据湖结合 Serverless 架构的入湖方案。...传统数据湖架构分入湖与出湖两部分,在上图链路中以数据存储为轴心,数据获取与数据处理其实是入湖部分,数据分析和数据投递其实算是数据出湖部分。...总结来看,整体数据湖链路中定制化程度最高,使用成本及代价最大的其实是数据入湖部分(指数据获取和入湖前的数据处理)。这块内容往往也是实现的数据湖架构比较核心的数据连接。...03 COS + Serverless 数据湖入湖解决方案 COS + Serverless 架构湖整体能力点及方案如下图所示,相关解决方案覆盖数据入湖,数据出湖,数据处理三大能力点,通过 Serverless...化封装为数据入湖,数据出湖提供更多能力拓展。

1.8K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Apache Hudi 的CDC数据入湖

    CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...下图是典型CDC入湖的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是入湖的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。

    1.2K10

    基于Apache Hudi 的CDC数据入湖

    02 CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...下图是典型CDC入湖的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...上游是入湖的变化事件流,对上可以支持各种各样的数据引擎,比如presto、Spark以及云上产品;另外可以利用Hudi的增量拉取能力借助Spark、Hive、Flink构建派生表。

    1.7K30

    数据湖技术架构是什么 数据湖对企业的作用

    我们经常会听见数据中心和数据库,因为它在我们的生活当中无处不在,但是很多人可能并不知道数据湖是什么,因为在日常生活中,数据湖似乎并不常见,但是它运用的领域是非常多的,下面将为大家介绍数据湖技术架构。...数据湖技术架构是什么 不管是数据中心还是数据库,它们都有自己的技术架构,数据湖技术架构是什么?...在数据湖的架构当中,较低级别的数据一般是空闲的。如果大家想要知道具体的数据湖技术构架,可以借助图层来理解。 数据湖对企业的作用 数剧湖对于企业的作用是比较多的。...首先,数据湖可以分析数据,这也就代表着它可以预测发展,这对于企业做出决策是非常有利的。其次,数据湖可以处理各种格式的数据,而且还能够将各种数据进行组合,这对于企业日常的办公以及管理是有帮助的。...现在的数据湖使用的成本并不高,而且数据湖能够适应企业的一切变化,所以数据湖是比较灵活的。 上面和大家介绍了数据湖技术架构,理解数据湖的技术架构,能够帮助大家更好的理解数据湖,它的技术架构是比较简单的。

    70720

    基于Flink CDC打通数据实时入湖

    照片拍摄于2014年夏,北京王府井附近 大家好,我是一哥,今天分享一篇数据实时入湖的干货文章。...数据入湖分为append和upsert两种方式。...3,数据入湖任务运维 在实际使用过程中,默认配置下是不能够长期稳定的运行的,一个实时数据导入iceberg表的任务,需要通过至少下述四点进行维护,才能使Iceberg表的入湖和查询性能保持稳定。...并增加小文件监控、定时任务压缩小文件、清理过期数据等功能。 2,准实时数仓探索 本文对数据实时入湖从原理和实战做了比较多的阐述,在完成实时数据入湖SQL化的功能以后,入湖后的数据有哪些场景的使用呢?...下一个目标当然是入湖的数据分析实时化。比较多的讨论是关于实时数据湖的探索,结合所在企业数据特点探索适合落地的实时数据分析场景成为当务之急。

    1.6K20

    流数据_数据回流是什么意思

    ————恢复内容开始———— 特征: 持续到达,数据量大,注重数据整体价值,数据顺序可能颠倒,丢失,实时计算, 海量,分布,实时,快速部署,可靠 linked in Kafka spark streaming...:微小批处理,模拟流计算,秒级响应 DStream 一系列RDD 的集合 支持批处理 创建文件流 10代表每10s启动一次流计算 textFileStream 定义了一个文件流数据源 任务...reduceByKey(lambda a,b:a+b) counts.pprint() ssc.start() ssc.awaitTermination() 客户端从服务端接收流数据...b) reducedStream.pprint() ssc.start() ssc.stop(stopSparkContext=True,stopGraceFully=True) kafka作为高级数据源...有状态转换 (windowLength,slideInterval)滑动窗口长度,滑动窗口间隔 名称一样 但function不一样 逆函数减少计算量 新进来的x+y,离开的x-y,当中的数据

    1.2K20

    【数据湖】塑造湖:数据湖框架

    大数据和数据湖的风险和挑战 大数据带来的挑战如下: 容量——庞大的数据量是否变得难以管理? 多样性——结构化表格?半结构化 JSON?完全非结构化的文本转储?...准确性——当数据量不同、来源和结构不同以及它们到达湖的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据湖视为任何事物的倾倒场。...这些数据可能都是完全相关和准确的,但如果用户找不到他们需要的东西,那么湖本身就没有价值。从本质上讲,数据淹没是指数据量如此之大,以至于您无法找到其中的内容。...框架 我们把湖分成不同的部分。关键是湖中包含各种不同的数据——一些已经过清理并可供业务用户使用,一些是无法辨认的原始数据,需要在使用之前进行仔细分析。...文件夹结构本身可以任意详细,我们自己遵循一个特定的结构: 原始数据区域是进入湖的任何文件的着陆点,每个数据源都有子文件夹。

    63820

    荐读|数据湖是什么东东 数据湖的四个最佳实践

    Pentaho公司的创始人兼首席技术官詹姆斯·狄克逊(James Dixon)发明了这个术语,他表示,其中一方面是由于对数据湖应该是什么存在着误解。...他从来就没有打算用数据湖来描述从所有企业应用程序获取数据的巨大的Hadoop存储库。 ? 数据湖是什么东东? 狄克逊说:“有人问数据湖是什么时,我告诉他们,它就是你以前在磁带上拥有的东西。...专家们表示,数据湖有四个关键的最佳实践: ·了解数据湖的使用场合 ·别忘了现有的数据管理最佳实践,比如确立强大的数据管理 ·知道数据湖的业务理由,因为这将决定合适的架构 ·要注意元数据 1 了解数据湖的使用场合...想确定你的数据是否可以建立在传统关系数据库、Hadoop集群或另一种NoSQL替代数据库,关键在于知道自己的业务使用场合将是什么,它需要哪种类型的数据。...如果数据将被转移到企业分析工具,那么你要考虑如何支持数据最佳实践。 诺里斯说:“重点绝不仅仅是数据,而是始终关于你要做什么工作。使用场合是什么,你可以运用什么应用程序来处理该数据以便从中受益。”

    84940

    uniqueidentifier什么意思_数据类型int是什么意思

    3 直接赋于32位的十六位数据   举例 0xffffffff00000000ffffffff00000000   三 UniqueIdentifier 数据类型 数据实际是怎么在数据库中保存的...UniqueIdentifier 数据类型存储实际的数据是16个字节的二进制值,   UniQueIdentifier 可以转化成实际的字符串型和二进制数据类型   四 NewID()函数是如何生成唯一的...五 使用 Uniqueidentifier数据类型的主要的优点   Uniqueidentifier 数据类型主要的优点是在使用newid函数生成值的时候是可以保证值的全球唯一性   可以唯一的标识单行的记录...对于多库(尤其是多机器,多网段的数据库的复制)来将比IDEntity来的更有效   其次在使用Identity的情况下,我们对自动生成的值是不能修改的,而Uniqueidentifier数据类型是可以随时修改的...  六 使用Uniqueidentifier的数据类型的缺点   1 对于生成的Uniqueidentifier 类型的值来讲 ,是无序   在正常显示相关的数据信息的时候,返回的信息是无序的

    1.4K30

    数据湖(一):数据湖概念

    数据湖概念一、什么是数据湖数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理...数据湖技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据湖的原因。...三、数据湖与数据仓库的区别数据仓库与数据湖主要的区别在于如下两点:存储数据类型数据仓库是存储数据,进行建模,存储的是结构化数据;数据湖以其本源格式保存大量原始数据,包括结构化的、半结构化的和非结构化的数据...而对于数据湖,您只需加载原始数据,然后,当您准备使用数据时,就给它一个定义,这叫做读时模式(Schema-On-Read)。这是两种截然不同的数据处理方法。...因为数据湖是在数据使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。图片图片

    1.5K94

    基于Apache Hudi + Flink的亿级数据入湖实践

    随着实时平台的稳定及推广开放,各种使用人员有了更广发的需求: •对实时开发来说,需要将实时sql数据落地做一些etl调试,数据取样等过程检查;•数据分析、业务等希望能结合数仓已有数据体系,对实时数据进行分析和洞察...,比如用户行为实时埋点数据结合数仓已有一些模型进行分析,而不是仅仅看一些高度聚合化的报表;•业务希望将实时数据作为业务过程的一环进行业务驱动,实现业务闭环;•针对部分需求,需要将实时数据落地后,结合其他数仓数据...总的来说,实时平台输出高度聚合后的数据给用户,已经满足不了需求,用户渴求更细致,更原始,更自主,更多可能的数据 而这需要平台能将实时数据落地至离线数仓体系中,因此,基于这些需求演进,实时平台开始了实时数据落地的探索实践...•ETL逻辑能够嵌入落数据任务中•开发入口统一 我们当时做了通用的落数据通道,通道由Spark任务Jar包和Shell脚本组成,数仓开发入口为统一调度平台,将落数据的需求转化为对应的Shell参数,启动脚本后完成数据的落地...当时Flink+Hudi社区还没有实现,我们参考Flink+ORC的落数据的过程,做了实时数据落地的实现,主要是做了落数据Schema的参数化定义,使数据开发同事能shell化实现数据落地。 4.

    90031

    Flink CDC + Hudi 海量数据入湖在顺丰的实践

    image.png 上图为 Flink + Canal 的实时数据入湖架构。...但是此架构存在以下三个问题: 全量与增量数据存在重复:因为采集过程中不会进行锁表,如果在全量采集过程中有数据变更,并且采集到了这些数据,那么这些数据会与 Binlog 中的数据存在重复; 需要下游进行...Upsert 或 Merge 写入才能剔除重复的数据,确保数据的最终一致性; 需要两套计算引擎,再加上消息队列 Kafka 才能将数据写入到数据湖 Hudi 中,过程涉及组件多、链路长,且消耗资源大...上述整个流程中存在两个问题:首先,数据多取,存在数据重复,上图中红色标识即存在重复的数据;其次,全量和增量在两个不同的线程中,也有可能是在两个不同的 JVM 中,因此先发往下游的数据可能是全量数据,也有可能是增量数据...将数据下发,下游会接上一个 KeyBy 算子,再接上数据冲突处理算子,数据冲突的核心是保证发往下游的数据不重复,并且按历史顺序产生。

    1.2K20

    WERCS是什么意思,产品入驻美国超市需要申请办理WERCSmart认证

    图片一、WERCS是什么意思WERCSmart认证系统就像是一个产品信息的登记平台,卖家可以根据这平台及时了解产品良好销售的合法性要求,材质要求,信息披露要求,使自己的产品越来越规范。...WERCSmart为零售商提供重要的数据集,以保证正确的装卸、运输、储存和处置含有化学品的产品。建立对合规性问题的真正控制。...WERCSmart平台使得零售商与供应商可以快速便捷的访问准确的合规性和可持续性数据。避免罚款,提高运营效率,推进环境的健康与安全。...二、产品入驻美国超市需要申请办理WERCSmart认证化学配置产品包含:含化学成分的产品;非化学配置产品含电池产品、照明用品、电子产品、工具包&礼物包等,入驻大型超市需要申请WERCS注册。

    61740

    腾讯主导 Apache 开源项目: InLong(应龙)数据入湖原理分析

    WeData 数据集成完全基于 Apache InLong 构建,本文阐述的 InLong 数据入湖能力可以在 WeData 直接使用。...关于 Apache Iceberg Apache Iceberg 是一种数据湖管理库,其设计简单、易用,并具备强大的查询和分析能力。...它解决了数据湖的成本效益和使用复杂性的问题,同时还提供了数据管理与访问的解耦、数据的可见性和一致性保证、快照和时间旅行查询等特性。...在各种数据湖的场景中,Iceberg 都能够发挥重要的作用,提高数据湖的可用性和可靠性,同时也为用户带来了更好的数据管理和查询体验。...Sort on Flink 入 Iceberg 上图为 Sort on Flink 主要流程,入 Iceberg 任务由三个算子一个分区选择器组成,Source 算子从源端拉取数据, Key Selector

    63010

    数据湖

    架构比略差 下面我们看下网上对于主流数据湖技术的对比 ?...从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据湖 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.湖中的数据和仓中的数据的联通测试...7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据湖和数仓的理论定义 数据湖 其实数据湖就是一个集中存储数据库,用于存储所有结构化和非结构化数据...数据湖可用其原生格式存储任何类型的数据,这是没有大小限制。数据湖的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据湖中不进行转换。...数据湖中的每个数据元素都会分配一个唯一的标识符,并对其进行标记,以后可通过查询找到该元素。这样做技术能够方便我们更好的储存数据。 数据仓库 数据仓库是位于多个数据库上的大容量存储库。

    63930
    领券