在Kimball的维度建模的数据仓库中,关于多维体系结构(MD)有三个关键性概念:总线架构(Bus Architecture),一致性维度(Conformed Dimension)和一致性事实(Conformed Fact)。
维度建模的数据仓库中,有一个概念叫Bus Architecture,中文一般翻译为“总线架构”。总线架构是Kimball的多维体系结构(MD)中的三个关键性概念之一,另两个是一致性维度(Conformed Dimension)和一致性事实(Conformed Fact)。
这两天看书,发现了和数据仓库相关的还有一个叫ODS的概念,它是企业级的全局数据库,用于提供集成的,企业级一致的数据,包含如何从各个子系统中向ODS抽取数据以及面向主题的角度存储数据。
第1章和第2章介绍了数据驱动组织的概念,并在大数据计划的背景下定义了数据操作的概念。现在,是时候退一步,探索一些其他基本但重要的概念了。在这一点上,我们最重要的任务之一是清楚地描述数据仓库和数据湖之间的区别。
ODS是一个面向主题的、集成的、可变的、当前的细节数据集合,用于支持企业对于即时性的、操作性的、集成的全体信息的需求。常常被作为数据仓库的过渡,也是数据仓库项目的可选项之一。
决策支持系统(DSS):综合利用大量数据有机组合众多模型(数据模型及数据处理模型)通过人机交互。辅助各级决策者实现科学决策的系统。
数据仓库理论的创始人W.H.Inmon在其《Building the Data Warehouse》一书中,给出了数据仓库的四个基本特征:面向主题,数据是集成的,数据是不可更新的,数据是随时间不断变化的。
【商务智能】数据预处理 【商务智能】数据仓库 ( 多维数据模型 | 多维数据分析 )
数据仓库的核心是展现层和提供优质的服务。ETL 及其规范、分层等所做的一切都是为了一个更清晰易用的展现层。
大家好,又见面了,我是你们的朋友全栈君。 ODS是一个面向主题的、集成的、可变的、当前的细节数据集合,用于支持企业对于即时性的、操作性的、集成的全体信息的需求。常常被作为数据仓库的过渡,也是数据仓库项目的可选项之一。
关键词: 数据仓库:内容组织 内容 数据平台:存储和计算 技术 数据中台:数据服务 应用
维度建模的数据仓库中,有一个概念叫Conformed Dimension,中文一般翻译为“一致性维度”。一致性维度是Kimball的多维体系结构中的三个关键性概念之一,另两个是总线架构(Bus Architecture)和一致性事实(Conformed Fact)。
《数据仓库工具箱—维度建模的完全指南》是数据仓库建模方面的经典著作, 1996年第一版出版被认为是数据仓库方面具有里程碑意义的事件。作者kimballl是数据仓库方面的权威,他将多年的数据仓库建模实战经验、技巧融入本书。他提出的许多维度建模概念被广泛应用于数据仓库的设计和开发中。
企业级的大数据平台,Hadoop至今仍然占据重要的地位,而基于Hadoop去进行数据平台的架构设计,是非常关键且重要的一步,在实际工作当中,往往需要有经验的开发工程师或者架构师去完成。今天的大数据开发分享,我们就来讲讲,基于Hadoop的数仓设计。
内容来源:2017 年 10 月 21 日,深奇智慧联合创始人高扬在“PostgreSQL 2017中国技术大会”进行《基于Greenplum,postgreSQL的大型数据仓库实践》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。
http://blog.csdn.net/u011239443/article/details/52623602 《An Overview of Data Warehousing and OLAP Technology》
Onehouse 创始人/首席执行官 Vinoth Chandar 于 2022 年 3 月在奥斯汀数据委员会[1]发表了这一重要演讲。奥斯汀数据委员会是“世界上最大的独立全栈数据会议”,这是一个由社区驱动的活动,包括数据科学、数据工程、分析、机器学习 (ML)、人工智能 (AI) 等。
DB(Database)数据库 ODS(Operational Data Store)运营数据存储 DW(Data Warehouse)数据仓储 DM(Data Market)数据集市
1991 年,数据仓库之父 Bill Inmon 在《Building the Data Warehouse》一书中,给出的定义:
关于数据中台的概念定义,业内有各种各样的版本,尤其是涉及数据中台与数据仓库、数据平台等相关概念的差异一直争议不断,可谓一百个人眼中,就有一百个数据中台,千百万人眼中,就有千百万个数据中台。关于概念之争论,笔者无意逐一罗列,更无意参与其中,而是希望从工程实践者的视角,提供一种全新的关于数据中台定义的思考逻辑。本章内容围绕数据中台的定义,采用两种方法,三个视角,给大家阐述,在工程实践者的眼中,数据中台的概念定义。
顶级云计算数据仓库展示了近年来云计算数据仓库市场发展的特性,因为很多企业更多地采用云计算,并减少了自己的物理数据中心足迹。
ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到 数据仓库或数据集市中,成为 联机分析处理、数据挖掘的基础。
数据中心(Data hubs)、数据湖(data lakes )和数据仓库(data warehouses)
数据仓库的基本特征包括以下几个方面:1)数据仓库面向主题。2)数据集成。3)数据相对稳定。4)数据反映历史变化。
ETL工具的典型代表有:Informatica、Datastage、OWB、微软DTS、Beeload、Kettle、久其ETL……
在DT时代,互联网,智能设备和其他形式的信息技术的爆炸性增长使得数据以同样令人印象深刻的速度增长。这个时代的挑战似乎是如何对所有这些数据进行分类,组织和存储。
数据仓库 Data Warehouse,是为企业所决策制定过程,提供所有支持类型的数据集合。用于分析性报告和决策支持。数仓是一个面向主题、集成的、相对稳定、反映历史变化的数据集合,随着大数据技术的发展,其作用不再局限于决策分析、还可以为业务应用、审计、追踪溯源等多方面提供数据支撑,帮助企业完成数字化转型。
企业数据仓库平台的所有者面临许多常见挑战。在本文中,我们着眼于七个挑战,探讨对平台和业务所有者的影响,并强调现代数据仓库如何应对这些挑战。
在建设数据仓库之前,数据散落在企业各部门应用的数据存储中,它们之间有着复杂的业务连接关系,从整体上看就如一张巨大的蜘蛛网:结构上错综复杂,却又四通八达。在企业级数据应用上单一业务使用方便,且灵活多变;但涉及到跨业务、多部门联合应用就会存在:①数据来源多样化,管理决策数据过于分散;②数据缺乏标准,难以整合;③数据口径不统一,可信度低;④缺乏数据管控体系,数据质量难以保证。如下图:
所谓系统集成,就是通过结构化的综合对接系统和计算机网络技术,将各个分离的软件、硬件、功能和信息等集成到相互关联的、统一和协调的系统之中,使资源达到充分共享,实现集中、高效、便利的管理。系统集成应采用功能集成、网络集成、软件界面集成等多种集成技术。系统集成实现的关键在于解决系统之间的互连和互操作性问题,它是一个多厂商、多协议和面向各种应用的体系结构。这需要解决各类设备、子系统间的接口、协议、系统平台、应用软件等与子系统、建筑环境、施工配合、组织管理和人员配备相关的一切面向集成的问题。系统集成作为一种新兴的服务方式,是近年来国际信息服务业中发展势头最猛的一个行业。
数据库(Database)是按照一定格式和数据结构在计算机保存数据的软件,属于物理层。
随着58业务体系的不断建设与发展,数据分析与应用需求越来越丰富,给数据仓库的建设工作带来了很大的挑战。
网管产品需要从数据仓库的角度来看,才能获得完整的视图。数据集成真正从大数据的角度来看,才能明白其中的挑战。一个运行了20多年的数据架构,必然有其合理性。也正是因为年代久远,存量过多,才导致举步维艰。在Cloud和5G时代,超密度网络集成和大数据洞察需求给电信供应商带来新的挑战,从数据仓库到数据湖,不仅仅架构的变革,更是思维方式的升级。本文尝试梳理数据架构的演进过程。 01 数据仓库历史沿革 1970年,关系数据库的研究原型System R 和INGRES开始出现,这两个系统的设计目标都是面向on-line
在日常工作中,元数据的管理主要体现在元数据的采集、存储、查询、应用几个方面。原则上应从规范化,到脚本化,到工具化的方向进行建设。
11、windows系统当双击.jpg文件的时候,系统会通过建立的 文件关联 来决定使用什么程序来打开该图像文件。
Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量。Hudi的一些常见用例是记录级的插入、更新和删除、简化文件管理和近乎实时的数据访问以及简化的CDC数据管道开发。
为在组织的数据环境中创造最大价值,传统的决策支持系统架构难以满足该需求。需要开发新的架构模式以释放数据的价值。为了充分利用大数据的价值,组织需要拥有灵活的数据架构,并能够从其数据生态系统中获取最大价值。
权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。
针对数据统计,分析指标的开发,划分对应所属业务板块,数据域,指标域,建立统一的,规范化的数据仓库和数据内容,从而能够提供标准化的,共享的数据服务能力,降低数据互动成本,致力于消除业务和技术之痛。
导读:元数据管理是企业数据治理的基础,是数据仓库的提升。作为一名数据人,首要任务就是理解元数据管理。
大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。 Jetbrains全系列IDE稳定放心使用
安东尼J.阿尔格明认为,数据架构正从一个混乱和纠结的时代进入一个更加干净和有组织的时代。在DATAVERSITY®数据体系结构在线会议上,Algmin回顾了过去的预测、当前的热门话题以及对未来的预测。他是Algmin Data Leadership的创始人兼首席执行官。
大家好,我是一哥,元数据管理是企业数据治理的基础,是数据仓库建设的关键。作为一名数据人,首要任务就是理解元数据管理。
由facebook开源的用于解决海量结构化日志的数据统计,后称Apache Hive 的开源项目。
问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么? 0.沃尔玛纸尿裤和啤酒 在了解湖仓一体化之前,我们先来看一则有关数据仓库的有趣故事吧~ 沃尔玛拥有世界上最大的数据仓库系统,它利用数据挖掘方法对交易数据进行分析后发现"跟尿布一起购买最多的商品竟是啤酒!后来经过大量实际调查和分析,发现在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒,这是因为美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。可见大数据其实很早之前就已经伴随在我们的日常生活之中了。 那么接下来我们就来了解一下湖仓一体化的基本概念吧。 1.什么是数据仓库、数据集市和数据湖? 1.1 数据仓库 早期系统采用数据库来存放管理数据,但是随着大数据技术的兴起,大家想要通过大数据技术来找到数据之间可能存在的关系,所以大家设计了一套新的数据存储管理系统,把所有的数据全部存储到数据仓库,然后统一对数据处理,这个系统叫做数据仓库。而数据库缺少灵活和强大的处理能力。 在计算机领域,数据仓库(英语:data warehouse,也称为企业数据仓库)是用于报告和数据分析的系统,被认为是商业智能的核心组件。数据仓库是来自一个或多个不同源的集成数据的中央存储库。数据仓库将当前和历史数据存储在一起,以利各种分析方法如在线分析处理(OLAP)、数据挖掘(Data Mining),帮助决策者能快速从大量数据中,分析出有价值的信息,帮助建构商业智能(BI)。 尽管仓库非常适合结构化数据,但是许多现代企业必须处理非结构化数据,半结构化数据以及具有高多样性、高速度和高容量的数据。数据仓库不适用于许多此类场景,并且成本效益并非最佳。
数据仓库最早的概念可以追溯到20世纪70年代MIT的一项研究,该研究致力于开发一种优化的技术架构并提出这些架构的指导性意见。
🍅 作者主页:不吃西红柿 🍅 简介:CSDN博客专家🏆、信息技术智库公号作者✌ 华为云享专家、HDZ核心组成员。 简历模板、PPT模板、学习资料、面试题库、技术互助。 目录 🍅 信息技术智库 🍅 ---- 文章很长,前言一定要看 拥有本篇文章,意味着你拥有一本完善的书籍,本篇文章整理了数据仓库领域,几乎所有的知识点,文章内容主要来源于以下几个方面: 源于「数据仓库交流群」资深数据仓库工程师的交流讨论,如《sql行转列的千种写法》。 源于群友面试大厂遇到的面试真题,整理投稿给我,形成《面试题库》。 源于笔
本文目录: 一、数据流向 二、应用示例 三、何为数仓DW 四、为何要分层 五、数据分层 六、数据集市 七、问题总结
领取专属 10元无门槛券
手把手带您无忧上云