首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

提取轨道的BCI大地坐标和ECI坐标

BCI(Brain-Computer Interface)大地坐标是指基于脑机接口技术提取的轨道的地球坐标系。BCI技术通过将人脑的电信号转化为计算机可识别的指令,实现人脑与计算机之间的直接交互。在提取轨道的过程中,BCI大地坐标可以用于确定轨道在地球表面的位置。

ECI(Earth-Centered Inertial)坐标是指基于地心惯性坐标系的轨道坐标。ECI坐标系是一种以地球质心为原点,以地球自转轴为Z轴的坐标系,用于描述天体在地球附近的运动。在提取轨道的过程中,ECI坐标可以用于确定轨道在地球附近的绝对位置。

BCI大地坐标和ECI坐标在航天领域中具有重要的应用价值。它们可以用于卫星导航、航天器轨道设计、航天任务规划等方面。通过获取轨道的BCI大地坐标和ECI坐标,可以实现对航天器的精确定位和轨道跟踪,为航天任务的执行提供重要的参考数据。

腾讯云提供了一系列与航天相关的产品和服务,包括云计算、人工智能、大数据分析等。其中,腾讯云的地理位置服务(Tencent Location Service)可以提供地理位置信息的查询和解析功能,可用于获取轨道的BCI大地坐标。腾讯云的云原生数据库TencentDB for TDSQL也可以用于存储和管理与轨道相关的数据。此外,腾讯云还提供了弹性计算、对象存储、内容分发网络等基础设施服务,以支持航天领域的应用需求。

更多关于腾讯云相关产品和服务的详细信息,您可以访问腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • iOS实践:通过核心动画完成过山车1. 思路和所用到的内容2. 辅助元素的创建(背景颜色、草坪、大地、小树、云彩)3. 雪山的实现4. 轨道的实现

    呼哧,终于今天到了最后一篇啦,也是醉了,弄了两三个月。从最开始计划只写三篇就好了,结果自己没把握好,一点点加成了今天这个样子。因为增加的内容太多,也差点变成太监文,不过好在没有放弃自己。所以各位行行好,要是看上去觉得还不错,就点个赞,打赏小的点儿。这玩意儿写的我是头发乱发,两眼通红。哇哇哇哇~ 接下来要写啥,确实还没想好。现在的感觉就是胸口的一块大石头没有了,要去尽情的嗨皮!!!! 之前在一个网站上看到了一个HTML5/SVG实现的过山车动画,点这里看网页版。 觉得很棒,想想咱们iOS也完全可以实现,正好还

    05

    Nature子刊 | 一种用于急性脑卒中患者的脑电图运动成像数据集

    脑机接口(BCI)是一项涉及与大脑部分直接通信的技术,近年来发展迅速;它已经开始用于临床实践,如患者康复。患者脑电图(EEG)数据集对于BCI的算法优化和临床应用至关重要,但目前还很少见。我们收集了50例急性中风患者使用无线便携式生理盐水脑电图设备在执行两项任务时的数据:1)想象右手运动和2)想象左手运动。该数据集包括四种类型的数据:1)运动想象指令,2)原始记录数据,3)去除伪影和其他操作后的预处理数据,以及4)患者特征。这是第一个处理急性中风患者左手和右手运动图像的开放数据集。我们认为,该数据集将非常有助于分析脑激活和设计更适用于急性脑卒中患者的解码方法,这将极大地促进运动想象领域-BCI领域的研究。

    01

    使用Vabs-Net进行多层次蛋白质预训练

    今天为大家介绍的是来自Shuqi Lu团队的一篇论文。近年来,在各种下游任务中基于3D结构的预训练蛋白质模型的发展激增,这代表了预训练蛋白质语言模型的重大进步。然而,大多数现有的基于结构的预训练模型主要关注残留物水平,即α碳原子,而忽略了如侧链原子等其他原子。作者认为,在残基和原子水平上对蛋白质进行建模是很重要的,因为侧链原子对许多诸如分子对接等下游任务也至关重要。然而,作者发现在预训练中天真地结合残基和原子信息通常会失败。一个关键原因是输入中包含原子结构导致的信息泄漏,这使得残差级预训练任务变得微不足道,导致残差表示的表达不足。为了解决这个问题,作者在3D蛋白质链上引入了一个跨度掩模预训练策略,以学习残基和原子的有意义表示。这导致了一种简单而有效的方法来学习适合于各种下游任务的蛋白质表示。结合位点预测和功能预测任务的大量实验结果表明,该预训练方法明显优于其他方法。

    01

    ​脑机接口(BCI)与人工智能:仅用思想来控制周围事物是什么感觉?

    如今高新技术实验室里,每天都在上演人机交互的过程,最常见的,残疾人通过训练自己的思想来控制机器人的四肢。而人类期望有一天能够用我们的思想操纵宇宙飞船,将我们的大脑下载到电脑上,并最终创造出半机器人。特斯拉和SpaceX的首席执行官收购了Neuralink公司,旨在建立大脑和计算机之间的直接联系。随着过去几十年科技的迅猛发展,人类和机器之间的界限已经开始缩小。在机器的帮助下,科幻小说中壮观的精神控制世界慢慢向现实靠近。目前这些新技术的前沿是脑机接口(BCI)和人工智能(AI),虽然BCIs和AI以往是相互独立开发和应用的。但是,现在越来越多的科学家们希望将两者结合起来,使脑电信号操纵外部设备过程更高效。

    01

    使用CNN-LSTM混合深度学习分类基于MUSE采集的运动想象EEG信号

    脑机接口(BrainComputer Interfaces)技术是将人脑与外部设备建立起直接的通路,在智能助残、人机工程、神经康复训练等领域有巨大的应用潜力。随着技术发展,BCI不仅可以用于运动障碍患者,甚至可以用于健康人群以增强他们的行动能力。为了将BCI应用进一步推广,本文采用了一种便携、低侵入性的头带式设备来采集被试主动式运动想象的脑电信号,并使用卷积神经网络和长短时记忆网络混合对脑电信号进行分类识别。研究结果表明,配合混合神经网络,这种低侵入式的检测方法依然可以达到很高的运动意图识别准确率(96.5%)。该论文是一篇结合了实验方案、采集设备、深度学习算法的综合性原创BCI研究论文,既可以用于BCI行业入门学习,了解BCI的一般研究方法,也可以为BCI领域内研究人员提供新方法的参考。

    03

    用于 BCI 信号分类的深度特征的 Stockwell 变换和半监督特征选择

    在过去的几年里,运动图像 (MI) 脑电图 (EEG) 信号的处理已被吸引到开发脑机接口 (BCI) 应用程序中,因为这些信号的特征提取和分类由于其固有的复杂性和倾向于人为它们的属性。BCI 系统可以提供大脑和外围设备之间的直接交互路径/通道,因此基于 MI EEG 的 BCI 系统对于控制患有运动障碍的患者的外部设备似乎至关重要。目前的研究提出了一种基于三阶段特征提取和机器学习算法的半监督模型,用于 MI EEG 信号分类,以通过更少的深度特征来提高分类精度,以区分左右手 MI 任务。在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、在所提出的特征提取方法的第一阶段采用斯托克韦尔变换从一维 EEG 信号生成二维时频图 (TFM)。接下来,应用卷积神经网络 (CNN) 从 TFM 中寻找深度特征集。然后,使用半监督判别分析(SDA)来最小化描述符的数量。最后,五个分类器的性能,包括支持向量机、判别分析、k近邻、决策树、随机森林,以及它们的融合比较。SDA 和提到的分类器的超参数通过贝叶斯优化进行优化,以最大限度地提高准确性。所提出的模型使用 BCI 竞赛 II 数据集 III 和 BCI 竞赛 IV 数据集 2b 进行验证。所提出方法的性能指标表明其对 MI EEG 信号进行分类的效率。

    02

    EEGNet:一个小型的卷积神经网络,用于基于脑电的脑机接口

    脑机接口(BCI)利用神经活动作为控制信号,可以与计算机直接通信。这种神经信号通常从各种研究充分的脑电图(EEG)信号中选择。对于给定的脑机接口(BCI)范式,特征提取器和分类器是针对其所期望的脑电图控制信号的不同特征而定制的,这限制了其对特定信号的应用。卷积神经网络(Convolutional neural networks, CNNs)已被用于计算机视觉和语音识别中进行自动特征提取和分类,并成功地应用于脑电信号识别中;然而,它们主要应用于单个BCI范例,因此尚不清楚这些架构如何推广到其他范例。在这里,我们想问的是,我们是否可以设计一个单一的CNN架构来准确地分类来自不同BCI范式的脑电图信号,同时尽可能小型的方法。在这项工作中,我们介绍了EEGNet,一个小型的卷积神经网络为基于脑电图的BCI。我们介绍了深度卷积和可分离卷积的使用来构建脑电图特定模型,该模型封装了众所周知的脑机接口脑电图特征提取概念。我们比较了EEGNet,包括被试内和跨被试分类,以及目前最先进的四种BCI范式:P300视觉诱发电位、错误相关负波(ERN)、运动相关皮层电位(MRCP)和感觉运动节律(SMR)。我们表明,当在所有测试范例中只有有限的训练数据可用时,EEGNet比参考算法更好地泛化,并取得了相当高的性能。此外,我们还演示了三种不同的方法来可视化训练过的EEGNet模型的内容,以支持对学习到的特征的解释。意义:我们的结果表明,EEGNet足够鲁棒,可以在一系列BCI任务中学习各种各样的可解释特征。本文发表在Journal of Neural Engineering杂志。

    03

    Nature:研究人员设计稳定器来改善脑机接口

    神经记录的不稳定性可导致临床脑机接口(BCI)失控。在这里,研究人员展示了低维神经流形(描述神经元之间特定关联模式的低维空间)的对齐可以用来稳定神经活动,从而在记录不稳定的情况下保持脑机接口的性能。研究人员在存在严重和突然的记录不稳定的情况下,通过皮层内BCIs在线控制光标时,以非人类灵长类对稳定剂进行了评估。稳定的BCIs在不同的不稳定条件下,经过多日恢复了有效的控制。稳定器不需要了解用户意图,并且可以超越监督的重新校准。即使在神经活动中几乎没有关于光标移动方向的信息,它也可以稳定BCI。该稳定器可应用于其他神经接口。

    04

    ​厦大等高校研究人员利用卷积神经网络学习脑电地形图表示进行分类

    脑电图(EEG)地形图表征(Electroencephalography topographical representation, ETR)可以监测区域大脑活动,是一种可以用于探索皮层机制和联系的技术。然而,如何找到一种鲁棒的方法来支持多目标对象、多通道的具有低信噪比的高维EEG数据是一个挑战。为了解决这一问题,厦门大学、海西研究院泉州装备制造研究所、华中师范大学以及云南民族大学等多所研究机构的研究人员联合提出了一种新的ETR能量计算方法,用于使用卷积神经网络学习大脑活动的EEG模式。它能够在一个通用的学习模型中识别多个对象。具体而言,研究人员在实验中使用里来自2008年脑机接口(BCI)竞赛IV-2a的数据集进行五类分类,其中包含四个运动想象动作和一个放松动作。在该项研究中,提出的分类框架的平均准确率比最好的分类方法高10.11%。另外,研究人员通过对ETR参数优化的研究,得到了一种用于BCI应用的用户界面,并实现了一种实时优化方法。

    02

    国内研究团队提出通过非侵入性脑机超表面平台实现人脑直接无线通信

    无论是侵入性的还是非侵入性的,脑机接口 (BCI)都具有无与伦比的前景,并有望帮助有需要的患者更好地与周围环境互动。受到基于 BCI 的康复技术的启发对于神经系统损伤和截肢,我们提出了一种电磁脑‑计算机‑超表面(EBCM)范式,由人类的认知直接和非侵入性地通过脑信号进行调节。我们通过实验表明,我们的 EBCM 平台可以从基于 P300 的脑电波的诱发电位直接、无创地调节人类的认知。对电磁域中的数字编码信息进行非侵入性处理,这些信息可以通过信息超表面以自动化和无线方式进一步处理和传输。两个EBCM 操作员之间通过准确的文本传输执行人脑的直接无线通信。此外,使用相同的 EBCM 平台展示了其他几个概念验证的精神控制方案,展示了灵活定制的信息处理和合成能力,如视觉光束扫描、波调制和模式编码。

    01
    领券